RUNNING TIME ANALYSIS - PART 2
BINARY SEARCH TREES
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How is PAO1 going?

Done!

On track to finish

On track to finish but my code is a mess
Stuck and struggling

Haven't started

moowe»



L
Midterm 2

- Cumulative but the focus will be on
- BST
- Running time analysis
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A more precise definition of Big-O

e f(n) and g(n): running times of two algorithms on inputs of size n.
e f(n) and g(n) map positive integer inputs to positive reals.
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What is the Big-O running time of algoX?

- Assume dataA is some data structure that supports the following operations A O(N2)
with the given running times, where N is the number of keys stored in the a O(N logN)

data structure: - O(N)
- insert: O(log N) D. O(log N)
* min: O(1) E.  Not enough information to
- delete: O(log N) compute

void algoX(int arr[], int N)
{
dataA ds;//ds contains no keys
for(int 1=0; i1 < N; i=i++)
ds.insert (arr[i]) ;
for(int i=0; i1 < N; i=i++)
arr[i] = ds.min() ;
ds.delete(arr[i]) ;


Lawton Nichols



L
Big-Omega

e f(n) and g(n): running times of two algorithms on inputs of size n.
e f(n) and g(n) map positive integer inputs to positive reals.
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We say f = Q(g) if there are constants ool

¢ >0, k>0 such that ¢ - g(n) < 1(n) 7ol

forn>= k 60 ,
f= Q(g) a0t

means that “f grows at least as fastas g7 «| 2n+20
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Big-Theta

e f(n) and g(n): running times of two algorithms on inputs of size n.
e f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there are constants
1, C, suchthat 0 < ¢,g(n) <f(n) <
c,g(n), for n >=k

f and g grow at the same rate s

Running time e,g (n)

N/ k

Problem Size (n)
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bool binarySearch(int arr[], int element, int N){
//Precondition: input array arr 1is sorted in ascending order
int begin = 0;
int end = N-1;
int mid;
while (begin <= end){
mid = (end + begin)/2;
if(arr[mid]==element){
return true;
}else if (arr[mid]l< element){
begin = mid + 1;
relseq
end = mid - 1;

}
}

return false:

}



Binary Search Trees

- WHAT are the operations supported?
- HOW do we implement them?

- WHAT are the (worst case) running times of each operation?



.
Height of the tree

-’ Path — a sequence of nodes and edges connecting a node with a descendant.
@ « A path starts from a node and ends at another node or a leaf
“===l¢ Height of node — The height of a node is the number of edges on the longest
downward path between that node and a leaf.

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45



Worst case Big-O of search

() - Given a BST of height H with N nodes,
what is the worst case complexity of
a e searching for a key?

A. O(1)
e 0 a B. O(log H)
(H)

D. O(H*log H)
E. O(N)
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Worst case Big-0 of insert

e *Given a BST of height H and N
nodes, what is the worst case
@ e complexity of inserting a key?
A. O(1)
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Worst case Big-O of min/max

@ - Given a BST of height H and N nodes,
what is the worst case complexity of
a @ finding the minimum or maximum key?

A. O(1)
@ 0 @ B. O(log H)

@(H)
~O(H*log H)

£ O(N)
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Worst case Big-O of predecessor/successor

@ - Given a BST of height H and N nodes,
what is the worst case complexity of
a @ finding the predecessor or successor key?

A. O(1)
@ 0 @ B. O(log H)
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Worst case Big-O of delete

@ -Given a BST of height H and N
nodes, what is the worst case
a @ complexity of deleting the key

(assume no duplicates)?
@ 0 @ O(1)


Lawton Nichols



Worst case analysis

Are binary search trees really faster than linked lists for finding elements?
- A. Yes

No

data:| 1 data:| 2 data:
next: »next: .next:lzl

As

Ak
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Completely filled binary tree

Level 0 e Nodes at each level have exactly two children,
except the nodes at the last level

Level 1

Level 2 e 0 @



Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level O

Level 1

Level 2

How many nodes are on level L in a completely filled binary search tree?

A.2
B.L
C.2"L

0>
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Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level O

Level 1

Level 2

Finally, what is the height (exactly) of the tree in terms of N?

log_2(N)!
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Balanced trees

- Balanced trees by definition have a height of O(log N)
- A completely filled tree is one example of a balanced tree
- Other Balanced BSTs include AVL trees, red black trees and so on

- Visualize operations on an AVL tree: https://visualgo.net/bn/bst



https://visualgo.net/bn/bst

Big O of traversals

e In Order: ON)
a e Pre Order: on)
Post Order: on)
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Summary of operations

Operation Sorted Array |Balanced Binary Linked List
Search Tree

O(1) O(log N)
Max O(1) O(log N)
Median O(1) ?, maybe O(N)
Successor O(1) O(log N)
Predecessor O(1) O(log N)
Search O(log N) O(log N)
Insert O(N) O(log N)
Delete O(N) O(log N)

O(N)
O(N)

?

?

O(N)
O(1) if it’s at the front, O(N) otherwise

O(N) to search, O(1) to delete and
rearrange pointers
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