RUNNING TIME ANALYSIS - PART 2 BINARY SEARCH TREES

Problem Solving with Computers-II

Include <iostace stdi
int mainl < ${ }^{\circ} \mathrm{HO}$

How is PA01 going?

A. Done!
B. On track to finish
C. On track to finish but my code is a mess
D. Stuck and struggling
E. Haven't started

Midterm 2

- Cumulative but the focus will be on
- BST
- Running time analysis

A more precise definition of Big-O

- $f(n)$ and $g(n)$: running times of two algorithms on inputs of size n.
- $f(n)$ and $g(n)$ map positive integer inputs to positive reals.

We say $\mathrm{f}=\mathrm{O}(\mathrm{g})$ if there is a constant $\mathrm{c}>0$ and $\mathrm{k}>0$ such that $f(n) \leq c \cdot g(n)$ for all $n>=k$.
$\mathrm{f}=\mathrm{O}(\mathrm{g})$
means that " f grows no faster than g "

What is the Big-O running time of algoX?

- Assume dataA is some data structure that supports the following operations with the given running times, where N is the number of keys stored in the data structure:
- insert: O(log N)
- min: O(1)
- delete: $\mathrm{O}(\log \mathrm{N})$

D. $O(\log N)$
E. Not enough information to compute

```
void algoX(int arr[], int N)
{
    dataA ds;//ds contains no keys
    for(int i=O; i < N; i=i++)
    ds.insert(arr[i]);
    for(int i=0; i < N; i=i++)
        arr[i] = ds.min();
        ds.delete(arr[i]);
```

\}

Big-Omega

- $f(n)$ and $g(n)$: running times of two algorithms on inputs of size n.
- $f(n)$ and $g(n)$ map positive integer inputs to positive reals.

We say $\mathrm{f}=\Omega(\mathrm{g})$ if there are constants $\mathrm{c}>0, \mathrm{k}>0$ such that $\mathrm{c} \cdot \mathrm{g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})$ for $\mathrm{n}>=\mathrm{k}$
$\mathrm{f}=\Omega(\mathrm{g})$
means that " f grows at least as fast as g "
g is a lower bound

Big-Theta

- $f(n)$ and $g(n)$: running times of two algorithms on inputs of size n.
- $f(n)$ and $g(n)$ map positive integer inputs to positive reals.

We say $\mathrm{f}=\Theta(\mathrm{g})$ if there are constants
$c_{1}, c_{2, k}$ such that $0 \leq c_{1} g(n) \leq f(n) \leq$
$\mathrm{c}_{2} \mathrm{~g}(\mathrm{n})$, for $\mathrm{n}>=\mathrm{k}$
f and g grow at the same rate Running time

Problem Size (n)

Worst case analysis of binary search

```
bool binarySearch(int arr[], int element, int N){
//Precondition: input array arr is sorted in ascending order
    int begin = 0;
    int end = N-1;
    int mid;
    while (begin <= end){
        mid = (end + begin)/2;
        if(arr[mid]==element){
            return true;
        }else if (arr[mid]< element){
            begin = mid + 1;
        }else{
            end = mid - 1;
        }
    }
    return false;
}
```


Binary Search Trees

- WHAT are the operations supported?
- HOW do we implement them?
- WHAT are the (worst case) running times of each operation?

Height of the tree

- Path - a sequence of nodes and edges connecting a node with a descendant.
- A path starts from a node and ends at another node or a leaf
- Height of node - The height of a node is the number of edges on the longest downward path between that node and a leaf.

BSTs of different heights are possible with the same set of keys Examples for keys: 12, 32, 41, 42, 45

Worst case Big-O of search

- Given a BST of height H with N nodes, what is the worst case complexity of searching for a key?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
C. (H)
D. $\mathrm{O}\left(\mathrm{H}^{*} \log \mathrm{H}\right)$
E. O(N)

Worst case Big-O of insert

- Given a BST of height H and N nodes, what is the worst case complexity of inserting a key?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
C. $\mathrm{P}(\mathrm{H})$
. $\mathrm{O}\left(\mathrm{H}^{*} \log \mathrm{H}\right)$
E. $\mathrm{O}(\mathrm{N})$

Worst case Big-O of min/max

- Given a BST of height H and N nodes, what is the worst case complexity of finding the minimum or maximum key?

Worst case Big-O of predecessor/successor

- Given a BST of height H and N nodes, what is the worst case complexity of finding the predecessor or successor key?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
C. $\mathrm{O}(\mathrm{H})$
E. O(N)

Worst case Big-O of delete

- Given a BST of height H and N nodes, what is the worst case complexity of deleting the key (assume no duplicates)?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
$\bigcirc \mathrm{O}(\mathrm{H})$
D. $\mathrm{O}\left(\mathrm{H}^{*} \log \mathrm{H}\right)$
E. $\mathrm{O}(\mathrm{N})$

Worst case analysis

Are binary search trees really faster than linked lists for finding elements?

- A. Yes

B. No

Completely filled binary tree

Relating H (height) and N (\#nodes)
find is $\mathrm{O}(\mathrm{H})$, we want to find $\mathrm{f}(\mathrm{N})=\mathrm{H}$
Level 0

Level 1

Level 2

How many nodes are on level L in a completely filled binary search tree?
A. 2
B.L
C. $\mathbf{2}^{*} \mathrm{~L}$
(D) ${ }^{2}$

Relating H (height) and N (\#nodes) find is $\mathrm{O}(\mathrm{H})$, we want to find $\mathrm{f}(\mathrm{N})=\mathrm{H}$

Finally, what is the height (exactly) of the tree in terms of N ? log_2(N)!

Balanced trees

- Balanced trees by definition have a height of $\mathrm{O}(\log \mathrm{N})$
- A completely filled tree is one example of a balanced tree
- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: https://visualgo.net/bn/bst

Big O of traversals

In Order: $\mathrm{O}(\mathrm{N})$
Pre Order: o(N)
Post Order: o(N)

Summary of operations

Operation	Sorted Array	Balanced Binary Search Tree	Linked List
Min	$\mathrm{O}(1)$	$\mathrm{O}(\log \mathrm{N})$	$\mathrm{O}(\mathrm{N})$
Max	$\mathrm{O}(1)$	$\mathrm{O}(\log \mathrm{N})$	$\mathrm{O}(\mathrm{N})$
Median	$\mathrm{O}(1)$?, maybe $\mathrm{O}(\mathrm{N})$	$?$
Successor	$\mathrm{O}(1)$	$\mathrm{O}(\log \mathrm{N})$	$?$
Predecessor	$\mathrm{O}(1)$	$\mathrm{O}(\log \mathrm{N})$	$?$
Search	$\mathrm{O}(\log \mathrm{N})$	$\mathrm{O}(\log \mathrm{N})$	$\mathrm{O}(\mathrm{N})$
Insert	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\log N)$	$\mathrm{O}(1)$ if it's at the front, $\mathrm{O}(\mathrm{N})$ otherwise
Delete	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\log \mathrm{N})$	$\mathrm{O}(\mathrm{N})$ to search, $\mathrm{O}(1)$ to delete and

