
GRAPH SEARCH

Review: Adjacency list representation of graph

2

Vertex adjList

0

1

2

3

4

5

3

class graph{
 public:
 graph(int n = 0) { // n is the number of vertices
 adjList = vector<list<int>>(n);
 }
 void addEdge(int from, int to);
 bool hasEdge(int i, int j) const;
 vector<bool> bfs(int source) const;
 bool isValidPath(const vector<int> & path) const; // returns true if the input path exists
 bool isReachable(int source, int dest) const; // returns true if a path exists from source to dest
 private:
 vector<list<int>> adjList;
};

Link to hand out: https://bit.ly/CS24F23GraphsHandout

Which of these functions did you implement from last lecture’s handout?

A
B
C
D

E: All of them!

https://bit.ly/CS24F23GraphsHandout

Breadth First Search: Sketch of Algorithm

4

- In general, a search algorithm would explore (or “visit”) from a source vertex
- all the vertices reachable ,
- never exploring out from the same vertex twice

- How does the BFS algorithm ensure this?

BFS Traverse: Time Complexity (express in terms of n, m)

5

Input: Graph G = (V, E), source vertex s, Let n = |V|, m = |E|
Start at source s;
Mark all the vertices as “not visited”
Mark s as visited
push s into a queue
while the queue is not empty:

- pop the vertex u from the front of the queue
- for each of u’s neighbor (v)

- If v has not yet been visited (v):
• Mark v as visited
• Push v in the queue

- How many times does the while loop run?
- How many times do we check if a vertex has been visited?

What is the time complexity of BFS?
A. O(n)
B. O(m)
C. O(n + m)
D. O(n^2)
E. None of the above

BFS Traverse: Time Complexity (express in terms of n, m)

6

Input: Graph G = (V, E), source vertex s, Let n = |V|, m = |E|
Start at source s;
Mark all the vertices as “not visited”
Mark s as visited
push s into a queue
while the queue is not empty:

- pop the vertex u from the front of the queue
- for each of u’s neighbor(v)

- If v has not yet been visited (v):
• Mark v as visited
• Push v in the queue

- How many times does the while loop run?
- How many times do we check if a vertex has been visited?

BFS Traverse: Space Complexity (express in terms of n, m)

7

Input: Graph G = (V, E), source vertex s, Let n = |V|, m = |E|
Start at source s;
Mark all the vertices as “not visited”
Mark s as visited
push s into a queue
while the queue is not empty:

- pop the vertex u from the front of the queue
- for each of u’s neighbor (v)

- If v has not yet been visited (v):
• Mark v as visited
• Push v in the queue

- Space complexity: Peak (additional) space usage expressed as big O

What is the space complexity of BFS?
A. O(n)
B. O(m)
C. O(n + m)
D. O(n^2)
E. None of the above

Application of BFS: shortest path

8

Vertex dist prev adjList

0 (source) 2

1 2, 3, 4, 5

2 0, 1, 3, 4

3 1, 2

4 1, 2, 5

5 1, 4

Goal: Compute dist(v): fewest number of edges from the path from vertex s to v

BFS Shortest Path

9

Input: Graph G = (V, E), source vertex s, Let n = |V|, m = |E|
Start at source s;
Mark all the vertices as “not visited”
Mark s as visited
push s into a queue
while the queue is not empty:

- pop the vertex u from the front of the queue
- for each of u’s neighbor (v)

- If v has not yet been visited (v):
• Mark v as visited
• Push v in the queue

- Modify BFS to compute the shortest path from source s to all other vertices

Depth First Search

10

Search as far down a single path as
possible, backtrack as needed

Depth First Search

11

Search as far down a single path as
possible, backtrack as needed

Assuming DFS chooses the lower number node to explore first,
in what order does DFS visit the nodes in this graph?
A. V0, V1, V2, V3, V4, V5
B. V0, V1, V3, V4, V2, V5
C. V0, V1, V3, V2, V4, V5
D. V0, V1, V2, V4, V5, V3

12

class graph{
 public:
 graph(int n = 0) { // n is the number of vertices
 adjList = vector<list<int>>(n);
 }
 void addEdge(int from, int to);
 bool hasEdge(int i, int j) const;
 vector<bool> bfs(int source) const;
 bool isValidPath(const vector<int> & path) const; // returns true if the input path exists
 bool isReachable(int source, int dest) const; // returns true if a path exists from source to dest
 // (New!) Implement a variation of BFS to compute the shortest path from a
 source vertex to all vertices reachable from it
 // (New!) Implement depth-first search
 private:
 vector<list<int>> adjList;
}; Link to hand out: https://bit.ly/CS24-Graph-SearchHandout

Work to complete your handout

https://bit.ly/CS24-Graph-SearchHandout

