GRAPH SEARCH

Review: Adjacency list representation of graph

Vertex adjList s\

0 2

1 215/ Y, Y

2, 0 Ay, 3/".

3 2
\, %

4 \, 2.15’.

5 ., L‘

on)

N: o’.\leﬂ"tb
& M. § gl

Which of these functions did you implement from last lecture’s handout?

class graph{
public:
graph(int n = 0) { // n is the number of vertices
adjList = vector<list<int>>(n);

}
void addEdge(int from, int to);
A bool hasEdge(int i, int j) const;
B vector<bool> int source) const;
C bool aconst vector<int> & path) const; / returns true if the input path exists
[D booli (int source, int dest) const; // returns true if a path exists from source to dest
private:
vector<list<int>> adjList;
¥
E: All of them!

Link to hand out: https://bit.ly/CS24F236GraphsHandout

https://bit.ly/CS24F23GraphsHandout

- In general, a search algorithm would explore (or “visit”) from a source vertex
o Al the vertices reachable , -
- never exploring out from the same vertex twice
- How does the BFS algorithm ensure this?

BFS Traverse: Time Complexity (express in terms of,n, m)

Input: Graph G = (V, E), source vertex s, Let n = |V|, m = |E|
Start at source s; O () A
Mark all the vertices as “not visited” o(n)

Mark s as visited O ((D

push s into a queue o () (n kmes) Whatis the time complexity of BFS?

- pop the vertex u from the front of the queue) g 8Enm))

/’ - If v has not yet been visited (v): 8§2A;)m)

&« Mark isited -
nox W ark v as visite c -
Kne owY’s push v in the queue None-ofthe-above- ()()

mbmes Whe Pr doop runy "vaties Wlich can nole Kee Onolgss F""“‘-d
©
" How many times does the While loop run? T\ imes
- How many times do we check if a vertex has been visited? s

BFS Traverse: Time Complexity (express in terms of n, m)
Input: Graph G = (V, E), source vertex s, Let n = |V|, m = |E|

Start at source s;
Mark all the vertices as “not visited” O(ﬂ)
Mark s as visited

push s into a queue

. . _ v Prian

while the queue is not empty: g OO
o(n)

- pop the vertex u from the front of the queue du.
- for each of u’s neighbor(v) | NE N Y o
- If v has not yet been visited (v): O(ﬂ\) is
« Mark v as visited Nole ‘01?3@"&“"
e Push vin the queue] W

- How many times does the while loop run?
- How many times do we check if a vertex has been visited?

BFS Traverse: Space Complexity (express in terms of n, m)
Input: Graph G = (V, E), source vertex s, Let n = |V|, m = |E]

Start at source s, () kS nD

Mark all the vertices as “not visited” Y\ ol OC

Mark s as viste hat is the space complexity of BFS?
push s into a queue O(n)

while the queue |ﬁot empty: 5. O(m)

-~ (4}
- pop the verte&}from the front of the queue C. O(n + m)

- for each of u’s neighbor (v) D. O(n*2)
- If v has not yet been visited (v): E. None of the above
« Mark v as visited ' 00)
"

e Push vin th 1. A8
ush v in the queue o St ,,‘5.33 veckol On)

- Space complexity: Peak (additional) space usage expressed as big O

Application of BFS: shortest path

Vertex dist prev adjList
g(source) O C"D 2
1 z 5 2,3,4,5
‘?2’ 1 (Q) 0,1,3,4
3 Q_ 2 1,2
“4’ 2 1,2,5
r 132

P ?% o 2 H v
Goal’Compute d)

-

iy =2 Aak=3

(4
Aust (5) : Shorkest distance {son o
Shot et (70\0\ :O,L,L(rs' '

ist(v): fewest number of edges from the path from vertex s to v

BFS Shortest Path

Input: Graph G = (V, E), source vertex s, Let n = |V|, m = |E]

Start at source s; o~ , Vb 2° s
Mark all the vertices as “not visited”, dast (1)7 % o), otreruni€
Mark s as visited ceht: Ao all —\

push s into a queue inendize P v
while the queue is not empty:
- pop the vertex u from the front of the queue
- for each of u’s neighbor (v)
- If v has not yet been visited (v):
* Mark v as visited
* Push vin the queue

digr (V) = | ~ Sior (w)
'P(ev()l) = N

- Modify BFS to compute the shortest path from source s to all other vertices

Depth First Search Sf\:w ¥ /

Search as far down a single path as
possible, backtrack as needed

D Fs (Soutee, \isited
Visihd Lsoucu:\ = TIue

, V &

1ot eadn neigh oo . . T

& s vor Vi o 25 q%y

Dfs (N, Jigited)

(\l«hd)

coulCo

Depth First Search

Search as far down a single path as @
possible, backtrack as needed

Assuming DFS chooses the lower number node to explore first,
in what order does DFS visit the nodes in this graph? h\/
A. V0, V1,V2,V3, V4, V5 \X

- N\
B. VO, V1, V3, V4, V2, V5 o Nedud (e

VO, V1, V3, V2, V4, V5~ Miteuglh € , toe 00l
@/o, V1, V2, V4, V5, V3 OFs , 1t doeen @\\0\@ R
(oneiconnt Credcd 0 A 9

Work to complete your handout
class graph{

public:
graph(int n = 0) { / n is the number of vertices
adjList = vector<list<int>>(n);
}
void addEdge(int from, int to);
bool hasEdge(int i, int j) const;
vector<bool> bfs(int source) const;
bool isValidPath(const vector<int> & path) const; // returns true if the input path exists
bool isReachable(int source, int dest) const; // returns true if a path exists from source to dest
// (New!) Implement a variation of BFS to compute the shortest path from a
source vertex to all vertices reachable from it

// (New!) Implement depth-first search
private:

vector<list<int>> adjList;
J» Link to hand out: https://bit.ly/CS24-Graph-SearchHandout

https://bit.ly/CS24-Graph-SearchHandout

