
WANT MAX? ASK HEAP
Problem Solving with Computers-II

Make a copy of the handout for today’s lecture
https://bit.ly/cs24-lect14-handout

1

https://bit.ly/cs24-lect14-handout

What is mystery doing ? (2 min)
void mystery(vector<int>& v){
 int n = v.size();
 for (int i = 0; i < n; i++){
 int index = i;
 for (int j = i + 1; j < n; j++){
 if(v[j] > v[index]){
 index = j;
 }
 }
 if(index != i){
 int temp = v[index];
 v[index] = v[i];
 v[i] = temp;
 }
 }
}

Example input:

20|5|7|1|3|2

https://bit.ly/cs24-lect14-handout 2

https://bit.ly/cs24-lect14-handout

void mystery(vector<int>& v){
 int n = v.size();
 for (int i = 0; i < n; i++){

 }
}

find max of vector: v[i:n]

swap v[i] with max element

What is the time and space complexity of mystery? (2 min)
3

Brainstorm ideas to improve the running time. (3 min)
void mystery(vector<int>& v){
 int n = v.size();
 for (int i = 0; i < n; i++){
 int index = i;
 for (int j = i + 1; j < n; j++){
 if(v[j] > v[index]){
 index = j;
 }
 }
 if(index != i){
 int temp = v[index];
 v[index] = v[i];
 v[i] = temp;
 }
 }
}

4

void mystery(vector<int>& v){
 int n = v.size();
 for (int i = 0; i < n; i++){

 }
}

find max of vector: v[i:n]

swap v[i] with max element

Notice that we are repeatedly finding the max!
5

Want min or max? Ask Heap!

Many algorithms need to compute the min OR max repeatedly
Heap is used speed up the running time of such algorithms!

Shortest Path

Sorting

Data Compression

6

New data structure: Heap
• Clarification

• heap, the data structure is not related to
 heap, the region of memory

• What are the operations supported?
• What are the running times?

7

Shape property:

Heap property :

Two important properties of a heap

1

2

20

3

5 7 10

70 30 6 7

In a min-heap, for each node (x):
key(x) <= key(children of x)

In a max-heap, for each node (x):
key(x) >= key(children of x)

9

1

2

20

3

5 7 10

70 30 6 7

Shape property:

Internally, a heap is a complete binary
tree, where each node satisfies the heap
property

Heap property :

Identifying heaps
Starting with the following min-Heap which of the following
operations will result in something that is NOT a min Heap

6

10

40

12

32 4743

45 41

A. Swap the keys 40 and 32
B. Swap the keys 32 and 43
C.Swap the keys 43 and 40
D. Insert 50 as the left child of 45
E. C&D

10

20, 5, 7, 1, 3, 2
push(x)

procedure push(x: key value)
 insert x in the first open spot in the tree
 while(x has a parent && x < parent(x)):

swap(x, parent(x))
 return {x was inserted into a min-heap}

min-Heap

11

procedure top()
 return key of root node {top element is returned}

1

2

20

3

5 7

12

min-Heap

20, 5, 7, 1, 3, 2
pop()1

2

20

3

5 7

procedure pop()

 return {key on top of the heap is deleted}

13

Internally the “heap binary tree” is really just a vector!

1

2

20

3

5 7

Work to complete the table on page 5 on your handout

Index of key

Index of parent

Index of left
child

Index of right
child

14

procedure push(x: key value)
 insert x in the first open spot in the tree
 while(x has a parent && parent(x) > x):

swap(x, parent(x))
 return

Repeat the exercise on page 4 of your handout to insert the
values 20, 5, 7, 1, 3, 2 into an initially empty min-heap. But instead of
drawing the results as a tree, draw the resulting vector

15

Next lecture
STL implementation of heap : priority_queue

Configuring priority_queue in different ways

16

