
HEAPS &HEAP SORT

Problem Solving with Computers-II

Make a copy of the handout for today’s lecture:
https://bit.ly/CS24-Heaps-lect15

Review: Heap or priority_queue
• What are the operations supported?
• What are the running times?

2

//Declare a (max) heap
priority_queue<int> pq;

Application — sorting
void selection_sort(vector<int>& v){
 int n = v.size();
 for (int i = 0; i < n; i++){
 int index = i;
 for (int j = i + 1; j < n; j++){
 if(v[j] > v[index]){
 index = j;
 }
 }
 if(index != i){
 int temp = v[index];
 v[index] = v[i];
 v[i] = temp;
 }
 }
}

Running time: O(n^2)

Space complexity: O(1)

Can we do better?

3

Application — simple heap sort
void simple_heap_sort(vector<int>& v){
 priority_queue<int> pq;
 for(auto& elem : v){
 pq.push(elem);
 }
 int i = 0;
 while(!pq.empty()){
 v[i] = pq.top();
 pq.pop();
 i++;
 }
}

Running time:

Space complexity:

Can we do better?

4

Shape property:

Heap property :

Review: Two important properties of a heap

Internally the “heap binary tree” is just a vector!
Activity 1 (5 min): Observe the animation, then answer the following questions

100 79 93 59 70 74 88 50 41 13 41 66 73 79 45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Complete the entries in the vector representation of the binary heap

For a key at index i in the vector (assume indices start at 0), what is:
index of its parent index of left child index of right child

How do we know if a key at index i has a left child?

7

Heapify: A fast way to turn an arbitrary vector into a heap

Activity 2 (5 mins): Observe the visualization of heapify, then describe the algorithm in your own words

To recreate the visualization, go to: https://visualgo.net/en/heap

Heapify: A fast way to turn an arbitrary vector to a heap

High-level approach: Given an arbitrary vector of keys. Starting from the
internal node with the largest index in the vector, and moving upwards in the
tree through all the internal nodes (level by level), sift the root of each subtree
downward as in the bubble-down process until the heap property is
restored.

Internally the “heap binary tree” is really just a vector!

What is the largest index of an internal node in a heap with n elements?
A. log n
B. (n - 1) /2
C. n - 1
D. n/2 - 1
E. None of the above

Heapify the vector below to convert it into a max-heap (3 min)

1 5 3 6 4 1 7 8 4

What is the resulting vector?
A. 8 7 6 5 4 4 3 1 1
B. 8 1 7 5 4 1 3 6 4
C. 8 6 7 5 4 1 3 1 4
D. Something else

Activity 3: Running time of heapify (10 min)

Heap Sort Algorithm

1 5 3 6 4 1 7 8 4

• Step 1: Heapify the input vector with n keys
• Step 2: Let S be the number of keys in the heap. Extract the max element (root key) by

swapping it with the last key in the vector. Reduce the size of the heap by 1. At this point, the
first (S - 1) keys in the vector represent the heap and the remaining are the sorted portion of
the vector Finally, restore the heap property of the root using the bubble down process

• Repeat step 2 while the size of the heap is greater than 1.

std::priority_queue template arguments

The template for priority_queue takes 3 arguments:
1. Type elements contained in the queue.
2. Container class used as the internal store for the priority_queue, the default is

vector<T>
3. Class that provides priority comparisons, the default is less

13

template <
 class T,
 class Container= vector<T>,
 class Compare = less <T>
 > class priority_queue;

Comparison class: A class for comparing objects

class myCompare{
 bool operator()(int& a, int & b) const {

 return a > b;
 }
 };

14

int main(){
 myCompare cmp;
 cout<<cmp(20, 10)<<endl;
}

If cmp(x, y) returns true, priority queue
will interpret this as:

x has ________ priority than y

Which element will be at the
top of such a priority queue?

std::priority_queue template arguments
15

//Template parameters for a max-heap
priority_queue<int, vector<int>, std::less<int>> pq;

//Template parameters for a min-heap
priority_queue<int, vector<int>, std::greater<int>> pq;

