
FINAL WRAP UP

Problem Solving with Computers-II

std::priority_queue template arguments

The template for priority_queue takes 3 arguments:

1. Type elements contained in the queue.

2. Container class used as the internal store for the priority_queue, the default is

vector<T>

3. Class that provides priority comparisons, the default is less

2

template <

 class T,

 class Container= vector<T>,

 class Compare = less <T>

 > class priority_queue;

Comparison class: A class for comparing objects
template <class T>

class myCompare{

 bool operator()(T& a, T& b) const {

 return a > b;

 }

 };

3

int main(){

 myCompare<int> cmp;

 cout<<cmp(20, 10)<<endl;

}

If cmp(x, y) returns true, priority queue
will interpret this as:

x has ________ priority than y

Which element will be at the top of such a
priority queue?

std::priority_queue template arguments
4

//Template parameters for a max-heap

priority_queue<int, vector<int>, std::less<int>> pq;

//Template parameters for a min-heap

priority_queue<int, vector<int>, std::greater<int>> pq;

Tips for Technical Interviews and Final
1. Listen carefully

2. Draw an example

3. State the brute force or a partially correct solution

• then work to get at a better solution

4. Optimize:

• Make time-space tradeoffs to optimize runtime

• Precompute information: Reorganize the data e.g. by sorting

5. Solidify your understanding of your algo before diving into writing code.

6. Start coding!

5

Interview practice!
Write a ADT called minStack that provides the following methods

• push() // inserts an element to the “top” of the minStack

• pop() // removes the last element that was pushed on the stack

• top () // returns the last element that was pushed on the stack

• min() // returns the minimum value of the elements stored so far

6

Practice the interview tips:

• Draw/solve a small example! (2 min)

• Think of the most straightforward approach (1 min)

• Evaluate its performance (1 min)

• Think of another approach and evaluate it (5 min)

• Can you trade off space/memory for better runtime?

• Pick the most promising approach and start coding! (10 min)

Data structure Comparison
7

Insert Search Min Max Delete min Delete max Delete (any)

Sorted array

Unsorted array

Sorted linked list (assume
access to both head and tail)

Unsorted linked list

Stack

Queue

BST (unbalanced)

BST (balanced)

Min Heap

Max Heap

Data structure Comparison
8

Insert Search Min Max Delete min Delete max Delete (any)

Sorted array O(N) O(logN) O(1) O(1) O(N) if
ascending
order, else O(1)

O(1) if
ascending, else
O(N)

O(logN) to find,
O(N) to delete

Unsorted array O(1) O(N) O(N) O(N) O(N) O(N) O(N)

Sorted linked list (assume
access to both head and tail)

O(N) O(N) O(1) O(1) O(1) O(1) O(N) to find,

O(1) to delete

Unsorted linked list O(1) O(N) O(N) O(N) O(N) O(N) O(N) to find,
O(1) to delete

Stack O(1) - only
insert to top

Not supported Not supported Not
supported

Not supported Not supported O(1) - Only the
element on top of
the stack

Queue O(1) - only to
the rear of the
queue

Not supported Not supported Not
supported

Not supported Not supported O(1) - only the
element at the
front of the
queue

BST (unbalanced) O(N) O(N) O(N) O(N) O(N) O(N) O(N)

BST (balanced) O(logN) O(logN) O(logN) O(logN) O(logN) O(logN) O(logN)

Min Heap O(logN) Not supported O(1) Not
supported

O(logN) Not supported O(logN)

Max Heap O(logN) Not supported Not supported O(1) Not supported O(logN) O(logN)

