INTRO TO OBJECT ORIENTED
PROGRAMMING

Problem Solving with Computers-II ++
(: e GitHub
‘ui:f:: n%mej":ace " 0 0

/1|

L
Today's goals

* Intro to Object Oriented Programming

* Defining classes and declaring objects

* Access specifiers: private, public

- Different ways of initializing objects and when to use each:
* Default constructor
- Parametrized constructor
- Parameterized constructor with default value

* Operator overloading
* what is operator overloading?
- why/when would we need to overload operators?
- how to overload operators in C++ ?

Procedural Programming

- Break down a problem into sub tasks (functions)
- Algorithm to bake a cake
Preheat the oven to 350F
Get the ingredients: 2 eggs, 1 cup flour, 1 cup milk
Mix ingredients in a bowl
Pour the mixture in a pan
Place in the over for 30 minutes

Object Oriented Programming:
A cake baking example

- Solution to a problem is a system of interacting objects
- An object has attributes and behavior
- What are the objects in this example?
1. Preheat the oven to 350F
2. Get the ingredients: 2 eggs, 1cup flour, 1 cup milk
3. Mix ingredients in a bowl
4. Pour the mixture in a pan
5. Place in the over for 30 minutes

Objects have attributes and behavior:
A cake baking example

Object Attributes Behaviors

Oven Size Turn on
Temperature Turn off
Number of racks Set temperature

Bowl Capacity Pour into
Current amount Pout out

Egg Size Crack

Separate(white from
yolk)

A class: pattern for describing similar objects

A generic pattern that is used to describe objects that have similar
attributes and behaviors

e.g. a bowl and a pan may be described by the same class

class Dish{
void pourIn(double amount);
void pourOut (double amount);
double capacity;
double currentAmount;

¥

Objects vs classes

class Dish{
void pourIn(double amount);
void pourOut (double amount);
double capacity;
double currentAmount;

}i

//Creating objects of this class

S
Concept: Classes describe objects

- Every object belongs to (is an instance of) a class
- An object may have fields, or variables
- The class describes those fields
- An object may have methods
- The class describes those methods
- A class is like a template, or cookie cutter

S N
Abstract Data Types (ADT)

- Abstract Data Type is defined by data + operations on the data.
- Key features
- Abstraction: hide implementation details

- Encapsulation: bundle data and operations on the data, restrict access to data
only through permitted operations

class Dish{
public:
volid pourIn(double amount);
volid pourOut (double amount);
private:
double capacity;
double currentAmount;

| ¥

Approximate Terminology

* instance = object

- field = instance variable

- method = function

- sending a message to an object = calling a function

How many objects of the ADT Complex are created in main()?

class Complex
{
private:
double real;
double imag;
public:
double getMagnitude() const;

int main(){
Complex p;
Complex w;
w.setReal(1l);

w.setImag(2);
P =W,
p.conjugate();

. double getReal() const;
p.print();

double getImaginary() const;
void print() const;
void conjugate();

One void setReal(double r);
Two void setImag(double r);
Three

Four
I am not sure .

moom>

Will this code compile?

class Complex
{
private:

double real;

double imag;
public:

double getMagnitude() const;

int main(){
Complex p;
Complex w(1l, 2);

P = W,
p.conjugate();
p.print();

; double getReal() const;
double getImaginary() const;
void print() const;

A. Yes void conjugate();

B. No void setReal(double r);

C. I am not sure . . . void setImag(double r);

.
Will this code compile?

class Complex
{
private:
double real;
double imag;
public:
Complex(double re = 0, double i

int main(){
Complex p;
Complex w(1l, 2);

p = W;
p.conjugate();
p.print();

I3

double getMagnitude() const;
double getReal() const;
double getImaginary() const;

A. Yes void print() const;
B. No: We need a void conjugate();
parametrized constructor void setReal(double r);

C. I am not sure . . . void setImag(double r);

Clever things in C++

New method: add()

int main(){ int main(){
Complex p; Complex p;
Complex q(2, 3); Complex q(2, 3);
Complex w(10, -5); Complex w(10, -5);

w.conjugate(); w.conjugate();
p = ' P =
p.print(); p.print()

Approach 1 Approach 2

New method: add()

int main(){ int main(){
Complex p; Complex p;
Complex q(2, 3); Complex q(2, 3);
Complex w(10, -5); Complex w(10, -5);

w.conjugate(); w.conjugate();
p = add(q, w); p = g.add(w);
p.print(); p.print()

Approach 1 Approach 2

Overloading the + operator for Complex objects

p = add(qg, w); p = g.add(w);

Goal: We want to apply the + operator to Complex type objects

. R
Overloading the << operator

int main(){ int main(){
Complex w(10, -5); Complex w(10, -5);

w.conjugate(); w.conjugate();
w.print(); cout << w;

} }

Before overloading the << operator After overloading the << operator

cout << w;

Select any equivalent C++ statement:

w.operator<<(cout);

cout.operator<<(w);

operator<<(cout, w);

A

B

C

operator<<(cout, w);
Select the function declaration that does NOT match the above

void operator<<(ostream &out,
const Complex &c);

volid Complex::operator<<(ostream &out);

Complex operator<<(ostream &out,
Complex c);

O
|| |‘J

L
Operator Overloading

We would like to be able to perform operations on two objects of the class using the
following operators:

<<

+

and possibly others

Some advice on designing classes

- Always, always strive for a narrow interface
- Follow the principle of abstraction and encapsulation:
- the caller should know as little as possible about how the method does
its job
- the method should know little or nothing about where or why it is being
called

- Your class is responsible for it’s own data; don’t allow other classes to
easily modify it! Make as much as possible private

What we have spoken about so far?

- Class = Data + Member Functions.

- Abstract Data Type = abstraction + encapsulation (uses classes)
- How to call member functions.

- How to implement a class’s methods.

