
INTRO TO OBJECT ORIENTED
PROGRAMMING

Problem Solving with Computers-II

Today’s goals
• Intro to Object Oriented Programming
• Defining classes and declaring objects
• Access specifiers: private, public
• Different ways of initializing objects and when to use each:

• Default constructor
• Parametrized constructor
• Parameterized constructor with default value

• Operator overloading
• what is operator overloading?
• why/when would we need to overload operators?
• how to overload operators in C++ ?

Procedural Programming
• Break down a problem into sub tasks (functions)
• Algorithm to bake a cake

 Preheat the oven to 350F

 Get the ingredients: 2 eggs, 1 cup flour, 1 cup milk

 Mix ingredients in a bowl
 Pour the mixture in a pan

 Place in the over for 30 minutes

Object Oriented Programming:
A cake baking example

• Solution to a problem is a system of interacting objects
• An object has attributes and behavior
• What are the objects in this example?

 1. Preheat the oven to 350F

 2. Get the ingredients: 2 eggs, 1cup flour, 1 cup milk

 3. Mix ingredients in a bowl
 4. Pour the mixture in a pan

 5. Place in the over for 30 minutes

Objects have attributes and behavior:
A cake baking example

Object Attributes Behaviors

Oven Size
Temperature
Number of racks

Turn on
Turn off
Set temperature

Bowl Capacity
Current amount

Pour into
Pout out

Egg Size Crack
Separate(white from
yolk)

6

A class: pattern for describing similar objects
A generic pattern that is used to describe objects that have similar
attributes and behaviors
e.g. a bowl and a pan may be described by the same class

class Dish{
void pourIn(double amount);
void pourOut(double amount);
double capacity;
double currentAmount;

};

7

Objects vs classes
class Dish{

void pourIn(double amount);
void pourOut(double amount);
double capacity;
double currentAmount;

};
 //Creating objects of this class

8

Concept: Classes describe objects

• Every object belongs to (is an instance of) a class
• An object may have fields, or variables

• The class describes those fields

• An object may have methods
• The class describes those methods

• A class is like a template, or cookie cutter

9

Abstract Data Types (ADT)
• Abstract Data Type is defined by data + operations on the data.
• Key features

• Abstraction: hide implementation details
• Encapsulation: bundle data and operations on the data, restrict access to data

only through permitted operations

class Dish{
public:

void pourIn(double amount);
void pourOut(double amount);

private:
double capacity;
double currentAmount;

};

10

Approximate Terminology
• instance = object
• field = instance variable
• method = function
• sending a message to an object = calling a function

How many objects of the ADT Complex are created in main()?

11

class Complex
{
private:
 double real;
 double imag;
public:
 double getMagnitude() const;
 double getReal() const;
 double getImaginary() const;
 void print() const;
 void conjugate();
 void setReal(double r);
 void setImag(double r);
};

int main(){
Complex p;
Complex w;
w.setReal(1);
w.setImag(2);
p = w;
p.conjugate();
p.print();

}

A. One
B. Two
C. Three
D. Four
E. I am not sure . . .

Will this code compile?
12

class Complex
{
private:
 double real;
 double imag;
public:
 double getMagnitude() const;
 double getReal() const;
 double getImaginary() const;
 void print() const;
 void conjugate();
 void setReal(double r);
 void setImag(double r);
};

int main(){
Complex p;
Complex w(1, 2);
p = w;
p.conjugate();
p.print();

}

A. Yes
B. No
C. I am not sure . . .

Will this code compile?
13

class Complex
{
private:
 double real;
 double imag;
public:
 Complex(double re = 0, double im = 0);
 double getMagnitude() const;
 double getReal() const;
 double getImaginary() const;
 void print() const;
 void conjugate();
 void setReal(double r);
 void setImag(double r);
};

int main(){
Complex p;
Complex w(1, 2);
p = w;
p.conjugate();
p.print();

}

A. Yes
B. No: We need a

parametrized constructor
C. I am not sure . . .

Clever things in C++

New method: add()
15

int main(){
Complex p;
Complex q(2, 3);
Complex w(10, -5);
w.conjugate();
p = ______________;
p.print();

}

int main(){
Complex p;
Complex q(2, 3);
Complex w(10, -5);
w.conjugate();
p = ______________;
p.print()

}

Approach 1 Approach 2

New method: add()
16

int main(){
Complex p;
Complex q(2, 3);
Complex w(10, -5);
w.conjugate();
p = add(q, w);
p.print();

}

int main(){
Complex p;
Complex q(2, 3);
Complex w(10, -5);
w.conjugate();
p = q.add(w);
p.print()

}

Approach 1 Approach 2

Overloading the + operator for Complex objects
17

p = add(q, w);

p = q.add(w);

 p = x + w;

Goal: We want to apply the + operator to Complex type objects

Overloading the << operator
18

int main(){
Complex w(10, -5);
w.conjugate();
w.print();

}

int main(){
Complex w(10, -5);
w.conjugate();
cout << w;

}

Before overloading the << operator After overloading the << operator

Select any equivalent C++ statement:

19

cout << w;

w.operator<<(cout);

cout.operator<<(w);

operator<<(cout, w);

A

B

C

Select the function declaration that does NOT match the above
call

20

operator<<(cout, w);

void operator<<(ostream &out,
 const Complex &c);

void Complex::operator<<(ostream &out);

A

B

Complex operator<<(ostream &out,
 Complex c);

C

Operator Overloading
We would like to be able to perform operations on two objects of the class using the
following operators:
<<
==
!=
+
-
and possibly others

22

Some advice on designing classes
• Always, always strive for a narrow interface
• Follow the principle of abstraction and encapsulation:

• the caller should know as little as possible about how the method does
its job

• the method should know little or nothing about where or why it is being
called

• Your class is responsible for it’s own data; don’t allow other classes to
easily modify it! Make as much as possible private

What we have spoken about so far?

• Class = Data + Member Functions.
• Abstract Data Type = abstraction + encapsulation (uses classes)
• How to call member functions.
• How to implement a class’s methods.

