INTRO TO OBJECT ORIENTED
PROGRAMMING

Problem Solving with Computers-I| C
l ' GitHub
309
ug,'x\'\qm:i“n}":):) .‘_;3.4’?‘:"'::“!'- "4

e
Today's goals

* Intro to Object Oriented Programming

* Defining classes and declaring objects

 Access specifiers: private, public

* Different ways of initializing objects and when to use each:
* Default constructor
- Parametrized constructor
- Parameterized constructor with default value

* Operator overloading
- what is operator overloading?
- why/when would we need to overload operators?
- how to overload operators in C++ ?

Procedural Programming

- Break down a problem into sub tasks (functions)
- Algorithm to bake a cake
Preheat the oven to 350F
Get the ingredients: 2 eggs, 1 cup flour, 1 cup milk
Mix ingredients in a bowl
Pour the mixture in a pan
Place in the over for 30 minutes

Object Oriented Programming:
A cake baking example

- Solution to a problem is a system of interacting objects
- An object has attributes and behavior ob)edcs
- What are the objects in this example?

1. Preheat tho 350F
2. Get the ingredients: @ 11 @
3. Mix ingredients in @

4. Pour the mixture in &pan)
5. Place in the over for 30 minutes

Objects have attributes and behavior:

A cake baking example

Object Attributes Behaviors
Oven Size Turn on
Temperature Turn off
- Number of racks Set temperature
@ Capacity Pour into
Current amount Pout out
Egg Size Crack

Separate(white from
yolk)

A class: pattern for describing similar objects

A generic pattern that is used to describe objects that have similar
attributes and behaviors

e.g. a bowl and a pan may be described by the same class

class Dish{

void pourIn(double amount); jW\C,NLO\ ch\w.m
void pourOut (double amount);

double capacity; vorickoles
double currentAmount; ;) e bet

}i

Objects vs classes

class Dish{
void pourIn(double amount);
void pourOut(double amount);
double capacity;

FOTS —
double currentAmount; \
}i fajﬁmnk

//Creating objects of this class Caﬁﬁd*ﬂ ¢
v~ ovyeck -

Ditw Y2, b\ | —
bowl; D \ J—)

Disw

Concept: Classes describe objects

- Every object belongs to (is an instance of) a class
- An object may have fields, or variables
- The class describes those fields
- An object may have methods
- The class describes those methods
- A class is like a template, or cookie cutter

S
Abstract Data Types (ADT)

- Abstract Data Type is defined by data + operations on the data.
- Key features
- Abstraction: hide implementation details
- Encapsulation: bundle data and operations on the data, restrict access to data

only through permitted operations
class Dish{ CD«V\‘)\CK ﬂ\kw\\aeq.

public: °
void pourIn(double amount); | Cz QA * db
void pourOut(double amount);)ﬁ K \
rivate: . VAl
’ ted)

double capacity;
double currentAmount; k%: o 2
\Fo\ﬂo

}i

Approximate Terminology

* instance = object

- field = instance variable

- method = function

- sending a message to an object = calling a function

How many objects of the ADT Complex are created in main()?

class Complex
{
private:
double real;
double imag;
public:
double getMagnitude() const;

int main(){
omplex p;

w.setReal(1);

w.setImag(2);

P =W,

—

p.conjugate();
p.print();

double getReal() const;
double getImaginary() const;
void print() const;

void conjugate();

A. One void setReal(double r);
a Two void setImag(double r);
C. Three .

D. Four

E. I am not sure .

2
Will this code compile?

class Complex
{
private:
double real;
double imag;
public:
double getMagnitude() const;

int main(){
Complex p;
Complex w(1l, 2);

P =W,
p.conjugate();
p.print();

double getReal() const;
double getImaginary() const;
void print() const;

A. Yes void conjugate();

B. No void setReal(double r);

C. I am not sure . . . void setImag(double r);

.
Will this code compile?

int main(){
Complex p;
Complex w(1, 2);

class Complex
{
private:
double real;
double imag;
public:
Complex(double re = 0, double im

P =W,
p.conjugate();
p.print();

double getMagnitude() const;
double getReal() const;
double getImaginary() const;
Yes void print() const;

No: We need a void conjugate();
parametrized constructor void setReal(double r);

C. I am not sure . . . void setImag(double r);

w >

Clever things in C++

X“_’_\
X. b .
1 2 v
\ \/ \\ \I\)N\C\‘
h He\\o ! \ War d Tello

, _ g\ 0O+ 7
|+ ZJ ‘\.*‘)

-

5
New method: add()

int main()<{ int main()<{
Complex p; Complex p;

:Complex q(2, 3); Complex q(2, 3);

_Complex w(10, -5); Complex w(10, -5);

w.conjugate(); w.conjugate()
P =o\3¢)(_gl,, \&_)_ p = % écw)'

p.print(); p.print()

I3
Approach 1 Approach 2

New method: add()

int main(){ int main(){
Complex p; Complex p;
Complex q(2, 3); Complex q(2, 3);
Complex w(10, -5); Complex w(10, -5);

w.conjugate(); w.conjugate();
p = add(q, w); p = g.add(w);
p.print(); p.print()

Approach 1 Approach 2

Overloading the + operator for Complex objects

p = add(qg, w); p = g.add(w);

Goal: We want to apply the + operator to Complex type objects

Overloading the << operator

int main(){ int main(){
Complex w(10, -5); Complex w(10, -5);

w.conjugate(); w.conjugate();
w.print(); cout << w;

} }

Before overloading the << operator After overloading the << operator

cout << w;

Select any equivalent C++ statement:

w.operator<<(cout);

cout.operator<<(w);

operator<<(cout, w);

A

B

C

operator<<(cout, w);
Select the function declaration that does NOT match the above

vold operator<<(ostream &out,
const Complex &c);

void Complex::operator<<(ostream &out);

Complex operator<<(ostream &out,
Complex c);

o

e
Operator Overloading

We would like to be able to perform operations on two objects of the class using the
following operators:

<<

|=
+

and possibly others

Some advice on designing classes

- Always, always strive for a narrow interface
- Follow the principle of abstraction and encapsulation:
- the caller should know as little as possible about how the method does
its job
- the method should know little or nothing about where or why it is being
called

* Your class is responsible for it’s own data; don’t allow other classes to
easily modify it! Make as much as possible private

What we have spoken about so far?

- Class = Data + Member Functions.

- Abstract Data Type = abstraction + encapsulation (uses classes)
- How to call member functions.

- How to implement a class’s methods.

