
OPERATOR OVERLOADING

LINKED LIST

Problem Solving with Computers-II

Today’s goals
• Operator overloading

• what is operator overloading?

• why/when would we need to overload operators?

• how to overload operators in C++ ?

• Linked List

• Procedural implementation vs OOP style

• Using recursion to implement linked list operations

Overloading the + operator for Complex objects
3

 p = q + w;

Goal: We want to apply the + operator to Complex type objects

New method: add()
4

int main(){

Complex p;

Complex q(2, 3);

Complex w(10, -5);

w.conjugate();

p = add(q, w);

p.print();

}

int main(){

Complex p;

Complex q(2, 3);

Complex w(10, -5);

w.conjugate();

p = q.add(w);

p.print()

}

Approach 1 Approach 2

Overloading the + operator for Complex objects
5

p = add(q, w);

p = q.add(w);

 p = q + w;

Goal: We want to apply the + operator to Complex type objects

Overloading the << operator
6

int main(){

Complex w(10, -5);

w.conjugate();

w.print();

}

int main(){

Complex w(10, -5);

w.conjugate();

cout << w;

}

Before overloading the << operator After overloading the << operator

Select any equivalent C++ statement:

7

cout << w;

w.operator<<(cout);

cout.operator<<(w);

operator<<(cout, w);

A

B

C

Select the function declaration that does NOT match the above
call

8

operator<<(cout, w);

void operator<<(ostream &out,

 const Complex &c);

void Complex::operator<<(ostream &out);

A

B

Complex operator<<(ostream &out,

 Complex c);

C

Operator Overloading
We would like to be able to perform operations on two objects of the class using the
following operators:

<<

==

!=

+

-

and possibly others

Linked list vs Array
10

Array

Defining the type Node
11

Simplest Linked List (just a head pointer)
12

• Create an empty list

• Add a node with data 3

struct Node {

 int data;

 Node* next;  
};

Evaluate each of the following expressions?

1. head->data

2. head->next->data

3. head->next->next->data

4. head->next->next->next->data

A. 1

B. 2

C. 3

D. nullptr

E. Run time error

head

struct Node {

 int data;

 Node *next;  
};

 Assume the following linked list exists

head
struct Node {

 int data;

 Node *next;  
};

Write a C++ function to add a node to the head of the list (procedural style)

Questions to ask about any ADT:

15

• What operations does the ADT support?

 The list ADT supports the following operations on a sequence:

1. push_front (add a value to the beginning of the sequence)

2. push_back (add a value to the end of the sequence)

3. pop_front (delete the first value in the sequence)

4. pop_back (delete the last value in he sequence)

5. front() (return the first value)

6. back() (return the last value)

7. delete (a value)

8. print all values

• How do you implement each operation (data structure used)?

• How fast is each operation?

List Abstract Data Type (ADT)
class IntList {

public:

 IntList();

 // other public methods

private:

 struct Node {

 int info;

 Node* next;

 };

 Node* head;

 Node* tail;

};

4050 2010

head

int IntList::push_front(int value){

 //add value to the beginning of the sequence

}

Recursion

Zooming into a Koch’s snowflake

Sierpinski triangle

Using recursion to implement operators involving a linked list

4050 2010

head

int IntList::sum(){

 //return the sum of the sequence

}

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on

• In that case define a new function with appropriate parameters: This is

your helper function

• Call the helper function to perform the recursion

• Usually the helper function is private

For example

Int IntList::sum(){

return sum(head);

 //helper function that performs the recursion.

}

4050 2010

head

int IntList::sum(Node* p){

}

4050 2010

head

bool IntList::clear(Node* p){

}

Overloading Operators for IntList
In lab02 you will overload operators for the IntList ADT

==

!=

+ (list concatenation)

<< (overloaded stream operation to print the sequence)

