RECURSION ON LINKED LISTS
C++ RULE OF THREE

Problem Solving with Computers-II (:++
ae 005“:;’::&
“ﬁ.c:: panes?" "y
W LR , £8 000"

]
Read the syllabus. Know what’s required. Know how to get help.

Review: Accessing structs using pointers

Node n {20, nullptr};
Node m {10, nullptr};
Node *p = &m;

Review: Dynamic memory (new and delete)

Node* pl = new Node {10, nullptr};
pl->next new Node {30, nullptr};

Review: Pointer assignment

Node* pl, *p2;

Node n {20, nullptr};
pl = &n;

p2 = pl;

Q: Which of the following pointer diagrams best represents the outcome of the above code?

A. B.
n | 20 \ n| 20 \

. 4 W
1 o pl o \\\ p2

P
/
p2 C. Neither, the code is incorrect

-5
Today's learning goals:

Recursion and its application to linked list operations

Dynamic memory and common errors

We want to understand the what, why, and how of the C++ Big Three:
* Destructor

« Copy constructor

« Copy assignment operator

Recursion

A A £ A A A A A A \ 4 A A A A A

Sierpinski triangle

Using recursion to implement operators involving a linked list

head
G

S

(=

pad €

int IntList::sum(){

//return the sum of the sequence

L
Helper functions

« Sometimes your functions takes an input that is not easy to recurse on

* |n that case define a new function with appropriate parameters: This is
your helper function

 Call the helper function to perform the recursion

» Usually the helper function is private

For example

Int IntList::sum(){

return sum(head);
//helper function that performs the recursion.

head
G

9—><5O

NE

pad €

int IntList::sum(Node* p){

head
G

9—><5O

NE

pad €

bool IntList::clear(Node* p){

Dynamic Memory: common errors

 Memory Leak: Program does not free memory allocated on the heap.

* Segmentation Fault: Code tries to access an invalid memory location

L
Constructor and Destructor

Every class has the following special methods:
» Constructor: Called right AFTER an object is created in memory
» Destructor: Called right BEFORE an object is deleted from memory

The compiler automatically generates default versions, but you can
provide user-defined implementations

void foo(){
Complex p(1, 2);

class Complex

{

private:
double real;
double imag;

Complexx q = new Complex(3, 4);

What is the OUtpUt? public:
Complex(double re = 0, double im
A.1 + 27 ~Complex(){ print();}
double getMagnitude() const;
double getReal() const;
B.3 + 4j double getImaginary() const;
void print() const;
c.1l + 2j void conjugate();

void setReal(double r);

3 + 47

void setImag(double r);

D. None of the above

void test 0(){
IntList x;
Xx.push front(10);
x.print();

Assume: What is the result of running the above code?

A. Compil
* Default destructor A M‘;Tﬂ':é’]::ﬁ“

* Default copy constructor C. Segmentation fault
* Default copy assignment D. None of the above

Concept Question class Node {

. . public:
IntList::~IntList(){ int data:
delete head; Node *ne;t;

’ head y

T~ -G

Which of the following objects are deleted when the destructor of IntList is called?
(A): head pointer

(B): only the first node

(C):Aand B

(D): All the nodes of the linked list

(E): Aand D

S A B
RULE OF THREE

If a class defines one (or more) of the following it should probably explicitly
define all three:

1. Destructor
2. Copy constructor
3. Copy assignment

We answered the following questions for the Complex class:
1. What is the behavior of these defaults?

2. What is the desired behavior ?

3. How should we over-ride these methods?

Copy constructor

- Parameterized constructor whose first argument is a class object
- initializes a (new) object using an existing object

Behavior of default copy constructor

void test copy constructor(){
IntList x;
X.push front(10);
Xx.push front(20);
IntList y(X);
// calls the copy c'tor
X.clear();

y.print(); What is the output?
} Assume: A. No output
destructor: user-defined B. 10 20
copy constructor: default C. Segmentation fault

copy assignment: default

Copy assignment (operator=)

* For existing objects x, y, this statement calls the operator= function:

X =Y,
- Default behavior: Copies the member variables of rhs object (y) to lhs object (x)

Complex x(1, 2);
Complex vy;

y = X,

cout << vy,

L
Behavior of default copy assignment

X:1->2->5->null

void default assignment 1(IntListé& x){
IntList y;

Yy = Xj

* What is the behavior of the default assignment operator?
Assume:

* User-defined destructor
* Default copy constructor
* Default copy assignment

L
Behavior of default copy assignment

void test default assignment 2(){
IntList x, y;
Xx.push front(10);
X.push front(20)

Yy = Xj
y.print ()
}
What is the result of running the above code? Assume:

. Prints 20, 1 '
A, ST B9, 18 * User-defined destructor
B. Segmentation fault

C. Memory leak * Default copy constructor

D. A 4B . .
E.ABadc Default copy assignment

L
Behavior of default copy assignment

void test default assignment 3(){
IntList x;
X.push front(10);
X.push front(20)
IntList y(X);
y.push front(30);
y.push front(40);
Yy = X;

y.print ()

What is the result of running the above code? Assume:

A, ST B9, 18 * User-defined destructor
B. Segmentation fault

C. Memory leak * User-defined copy constructor

D. A &B *]
ignmen
E.A,BandC Default copy assignment

S A B
RULE OF THREE

If a class defines one (or more) of the following it should probably explicitly
define all three:

1. Destructor
2. Copy constructor
3. Copy assignment

