
RECURSION ON LINKED LISTS
C++ RULE OF THREE

Problem Solving with Computers-II

Read the syllabus. Know what’s required. Know how to get help.

Review: Accessing structs using pointers
2

Node n {20, nullptr};
Node m {10, nullptr};
Node *p = &m;

Review: Dynamic memory (new and delete)
3

Node* p1 = new Node {10, nullptr};
p1->next = new Node {30, nullptr};

Review: Pointer assignment

Q: Which of the following pointer diagrams best represents the outcome of the above code?

4

Node* p1, *p2;
Node n {20, nullptr};
p1 = &n;
p2 = p1;

A.

n
B.

n

C. Neither, the code is incorrect

p1

p2

p1 p2

 \20 20 \

Today’s learning goals:
5

Recursion and its application to linked list operations

Dynamic memory and common errors

We want to understand the what, why, and how of the C++ Big Three:

• Destructor

• Copy constructor

• Copy assignment operator

Recursion

Zooming into a Koch’s snowflake

Sierpinski triangle

Using recursion to implement operators involving a linked list

4050 2010

head

int IntList::sum(){

 //return the sum of the sequence
}

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion
• Usually the helper function is private
For example

Int IntList::sum(){

return sum(head);
 //helper function that performs the recursion.

}

4050 2010

head

int IntList::sum(Node* p){

}

4050 2010

head

bool IntList::clear(Node* p){

}

Dynamic Memory: common errors
• Memory Leak: Program does not free memory allocated on the heap.

• Segmentation Fault: Code tries to access an invalid memory location

Constructor and Destructor
Every class has the following special methods:

• Constructor: Called right AFTER an object is created in memory

• Destructor: Called right BEFORE an object is deleted from memory

The compiler automatically generates default versions, but you can
provide user-defined implementations

What is the output?

A.1 + 2j

B.3 + 4j

C.1 + 2j
 3 + 4j

D.None of the above

class Complex
{
private:
 double real;
 double imag;
public:
 Complex(double re = 0, double im = 0);
 ~Complex(){ print();}
 double getMagnitude() const;
 double getReal() const;
 double getImaginary() const;
 void print() const;
 void conjugate();
 void setReal(double r);
 void setImag(double r);
};

void foo(){
 Complex p(1, 2);
 Complex* q = new Complex(3, 4);
}

void test_0(){
IntList x;
x.push_front(10);

 x.print();
}

What is the result of running the above code?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. None of the above

Assume:
* Default destructor
* Default copy constructor
* Default copy assignment

Concept Question

head

(A): head pointer
(B): only the first node
(C): A and B
(D): All the nodes of the linked list
(E): A and D

IntList::~IntList(){
delete head;

}

Which of the following objects are deleted when the destructor of IntList is called?

 class Node {
 public:
 int data;
 Node *next;
 };

RULE OF THREE
If a class defines one (or more) of the following it should probably explicitly
define all three:
1. Destructor
2. Copy constructor
3. Copy assignment

We answered the following questions for the Complex class:
1. What is the behavior of these defaults?
2. What is the desired behavior ?
3. How should we over-ride these methods?

Copy constructor
• Parameterized constructor whose first argument is a class object
• initializes a (new) object using an existing object

Behavior of default copy constructor
void test_copy_constructor(){

IntList x;
x.push_front(10);
x.push_front(20);
IntList y(x);
// calls the copy c’tor
x.clear();
y.print();

} Assume:
destructor: user-defined
copy constructor: default
copy assignment: default

What is the output?
A. No output
B. 10 20
C. Segmentation fault

Copy assignment (operator=)
• For existing objects x, y, this statement calls the operator= function:

 x = y;
• Default behavior: Copies the member variables of rhs object (y) to lhs object (x)

Complex x(1, 2);
Complex y;
y = x;
cout << y;

Behavior of default copy assignment
x : 1 -> 2- > 5 -> null

void default_assignment_1(IntList& x){
IntList y;
y = x;

}

* What is the behavior of the default assignment operator?
Assume:
* User-defined destructor
* Default copy constructor
* Default copy assignment

Behavior of default copy assignment
void test_default_assignment_2(){
 IntList x, y;
 x.push_front(10);
 x.push_front(20)

y = x;
y.print()

}

Assume:
* User-defined destructor
* Default copy constructor
* Default copy assignment

What is the result of running the above code?
A. Prints 10, 20
B. Segmentation fault
C. Memory leak
D. A &B
E. A, B and C

Behavior of default copy assignment
void test_default_assignment_3(){
 IntList x;
 x.push_front(10);
 x.push_front(20)
 IntList y(x);

y.push_front(30);
y.push_front(40);
y = x;
y.print()

}
Assume:
* User-defined destructor
* User-defined copy constructor
* Default copy assignment

What is the result of running the above code?
A. Prints 10 , 20
B. Segmentation fault
C. Memory leak
D. A &B
E. A, B and C

RULE OF THREE
If a class defines one (or more) of the following it should probably explicitly
define all three:
1. Destructor
2. Copy constructor
3. Copy assignment

