

BINARY SEARCH TREES

Problem Solving with Computers-II

Binary Search
• Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.

• Invariant. Algorithm maintains a[lo] ≤ value ≤ a[hi].

• Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

Trees
3

 A tree has following general properties:
 • One node is distinguished as a root;
 • Every node (exclude a root) is connected

by a directed edge from exactly one other
node;

 A direction is: parent -> children
• Leaf node: Node that has no children

Which of the following is/are a tree?

A. B.

C.

D. A & B

E. All of A-C

4

Binary Search Trees
• What are the operations supported?

• What are the running times of these operations?

• How do you implement the BST i.e. operations supported by it?

5

Operations supported by Sorted arrays and Binary Search Trees (BST)

Operations
Min
Max
Successor
Predecessor
Search
Insert
Delete
Print elements in order

Example keys: 42, 32, 45, 12, 41, 50

Binary Search Tree – What is it?

42

32

12

45

41 50

7

Do the keys have to be integers?

• Each node:
• stores a key (k)
• has a pointer to left child, right child

and parent (optional)
• Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree < Node’s key
Node’s key < Keys in node’s right subtree

Which of the following is/are a binary search tree?

42

32

12

42

3212

42

3212 65

30 38

A. B.

42

32

12

56

45

D.

C.

E. More than one of these

BSTs allow efficient search!

9

• Start at the root;
• Trace down a path by comparing k with the key of the

current node x:
• If the keys are equal: we have found the key

• If k < key[x] search in the left subtree of x

• If k > key[x] search in the right subtree of x

Search for 41, then search for 53

42

32

12

45

41 50

10

Insert
• Insert 40
• Search for the key
• Insert at the spot you expected to find it

42

32

12

45

41 50

11

Min/Max
Which of the following described the algorithm to
find the maximum value in the BST?

A. Follow right child pointers from the root, until a node
with no right child is encountered, return that node’s key

B. Follow left child pointers from the root, until a node
with no left child is encountered, return that node’s key

C. Traverse to the last level in the tree and traverse the
tree left to right, return the key of the last node in the last
level.

42

32

12

45

41 50

Define the BST ADT

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements in order

42

32

12

45

41 50

class BSTNode {

public:
 BSTNode* left;
 BSTNode* right;
 BSTNode* parent;
 int const data;

 BSTNode(int d) : data(d) {
 left = right = parent = nullptr;
 }
};

13

14

3

2 4

6

7

13

15

18

17 20

9

Maximum = 20

Max: find the maximum key value in a BST

Alg: int BST::max()

15

3

2 4

6

7

13

15

18

17

9

Min = ?

Min: find the minimum key value in a BST

Alg: int BST::min(){

Start at the root.
Follow ________ child
pointers from the root, until
a node with no left child is
encountered.
Return the key of that node

}

18

Traversing down the tree

42

32

12

45

41 50

• Suppose n is a pointer to the root. What is the output
of the following code:

n = n->left;

n = n->right;

cout<<n->data<<endl;

A. 42
B. 32
C. 12
D. 41
E. Segfault

Traversing up the tree

42

32

12

45

41 50

• Suppose n is a pointer to the node with value 50.
• What is the output of the following code:

n = n->parent;

n = n->parent;

n = n->left;

cout<<n->data<<endl;

A. 42
B. 32
C. 12
D. 45
E. Segfault

18

In order traversal: print elements in sorted order

42

32

12

45

41 50

Algorithm Inorder(tree)
 1. Traverse the left subtree, i.e., call Inorder(left-subtree)
 2. Visit the root.
 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

19

Pre-order traversal: nice way to linearize your tree!

42

32

12

45

41 50

Algorithm Preorder(tree)
 1. Visit the root.
 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

20

Post-order traversal: use to recursively clear the tree!

42

32

12

45

41 50

Algorithm Postorder(tree)
 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
 3. Visit the root.

21

Predecessor: Next smallest element
42

32

23

45
20

50

• What is the predecessor of 32?
• What is the predecessor of 45?

int bst::predecessor(BSTNode* n, int value) const{
 if(!n) return std::numeric_limits<int>::min();
 if(n->left){
 //Case 1

 return ________________________;

 }else{
 //Case 2

 }
}

Fill in the blank for case 1 using min/max helper functions
A.n->left;
B.min(n)
C.max(n)
D.min(n->left)
E.max(n->left)

22

Successor: Next largest element
42

32

23

4520

50

• What is the successor of 45?
• What is the successor of 50?
• What is the successor of 60?

48

80

70

60

90

23

Delete: Case 1 - Node is a leaf node
• Set parent’s (left/right) child pointer to null
• Delete the node

42

32

23

4520

50

48

80

70

60

90

24

Delete: Case 2 - Node has only one child
• Replace the node by its only child

42

32

23

4520

50

48

80

70

60

90

25

Delete: Case 3 - Node has two children
• Can we still replace the node by one of its

children? Why or Why not?42

32

23

4520

50

48

80

70

60

90

