BINARY SEARCH TREES

Problem Solving with Computers-I|
L qc)ude Aios:;:a:d; |

Mv O%’F ce ‘\O'\M‘& C1C¢ “:oday -

(Mm) L-20p o 3:b0P A\ e 1\ 5T

e
Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[1i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[lo] =value = alhi].

- Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0O 1 2 3 4 5 6 7 8 9 10 1M 12 13 14

lo hi

A tree has following general properties:

* One node is distinguished as a root;

» Every node (exclude a root) 1s connected
by a directed edge from exactly one other
node;

A direction is: parent -> children
» Leaf node: Node that has no children

9 s he fook nod-€

ea{m\e& 2's childrten afe 3+ 226G

Em?\-\' Ne€
o ()

(A
< \(Syu‘ NN

Which of the following is/are a tree?

é { Yookt @

C')(

(D)A&B @

<

Bfﬂ&@y \ (ec

E. All of A-C

Binary Search Trees

- What are the operations supp_c_>_rted?
Cearchh '.

- What are the running times of these operations?

- How do you implement the BST i.e. operations supported by it?

e
Operations supported by Sorted arrays and Binary Search Trees (BST)

Example keys: 42, 32, 45,(12) 41, 50

Operations
Min Y,\L\Bl\ LH\ L'l\ L‘gl SOJ
Max | o) [2% 3
Successor (nexr latger Vey) Saived atfey
Predecessor (net Smaler “"'ﬂ)
_sSearch (g-.m,-\, Seacch
—nsert (vor fons)

— Delete {hOY' ,(_ook)
Print elements in order

N\ A\

Binary Se\?{ch Tree — What is it?
2\ uages 2

\%'W Each node:
/\@} « stores a key (k)

* has a pointer to left child, right child
and parent (optional)
« Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree < Node’s key
Node’s key < Keys in node’s right subtree

Do the keys have to be integers?

Which of the following is/are a binary search tree’z/

BSTs allow efficient search!
{oOX O\

Start at the root;

Trace down a path by comparing k with the key of the
current node X:

- If the keys are equal: we have found the key
- If k <key[x] search in the left subtree of x
- If k> key[x] search in the right subtree of x

Search for 41, then search for 53

=

*Insert 40
- Search for the key
- Insert at the spot you expected to find it

e
Min/Max
<

o>
Which of the following described the algorithm to
find the maximum value in the BST?

oIIow right child pointers from the root, until a node
with no right child is encountered, return that node’s key

(enind
B. Follow left child pointers from the root, until a node
with no left child is encountered;, return that node’s key

C. Traverse to the last level in the tree and traverse the
< tree left to right, return the key of the last node in the last
level. M'»;\;\ﬂjy\ 'S nov ?‘(dK Qj\ou@\ H be on adgavitava

. - ’
Ny 8 defet A mehow gf “Revd T8 how

™
yo {*fo\leﬁ o ‘el from ek odep docs el

: r dhese 2YR-
xina\\v. e ¥ N tﬁ“‘}ﬂf";m DB“ST- Loothga. counter exranp'e o

Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

—

class BSTNode { l

date nad
public:
BSTNode* left; BQTNO(_\Q. pafent
BSTNode* right; l“

BSTNode* parent;
int const data; %

BSTNode(ecamst int &€d) : data(d) { cie N
left = right = parent = ‘;z\“l\PV}- \e‘f\' J

}
};

Traversing down the tree

Suppose n is a pointer to the root. What is the output

of the following code:
n = n->left; e

n = n->right;

cout<<n->data<<endl; e e

A. 42

B. 32

¥ OO ©

D. 41
E. Segfault

Traversing up the tree

Suppose n 1s a pointer to the node with value 50.
What is the output of the following code:

n = n->parent; e

n = n->parent;

n = n->left; e
cout<<n->data<<endl; e

A. 42

o OXOMO

C. 12
D. 45
E. Segfault

Max: find the maximum key value in a BST

Alg: int BST: :max ()

(15

O (18
() Q@ @&
ONONN®

Maximum = 20

Min: find the minimum key value in a BST

Alg: int BST: :min () {

Start at the root.

Follow child (6) (18)
pointers from the root, until e GG
a node with no left child is @

encountered. e ° @

Return the key of that node e

b

Min=?

In order traversal: print elements in sorted order

e Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)
@ @ 2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Pre-order traversal: nice way to linearize your tree!

e Algorithm Preorder(tree)
1. Visit the root.
@ @ 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Post-order traversal: use in recursive destructors!

e Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
@ 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
e 3. Visit the root.

Predecessor: Next smallest element
e - What is the predecessor of 327

- What is the predecessor of 457

OJNO
O

Successor: Next largest element

e - What is the successor of 457
- What is the successor of 507

@ @ - What is the successor of 60?

Delete: Case 1

e Case 1: Node is a leaf node
- Set parent’s (left/right) child pointer to null

a @ * Delete the node

® e 6e @

Delete: Case 2

e Case 2 Node has only one child
- Replace the node by its only child

Delete: Case 3
e Case 3 Node has two children

- Can we still replace the node by one of its

e @ children? Why or Why not?

® e 6e @

