BINARY SEARCH TREES

Problem Solving with Computers-I| C | '
Lon 4105::53:&
‘\:‘::nq nase=? A
wa*“‘l.\ 13 e

e
Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[1i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[lo] =value = alhi].

- Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0O 1 2 3 4 5 6 7 8 9 10 1M 12 13 14

lo hi

A tree has following general properties:

* One node is distinguished as a root;

» Every node (exclude a root) 1s connected
by a directed edge from exactly one other
node;

A direction is: parent -> children
» Leaf node: Node that has no children

Which of the following is/are a tree?

A © B.

D.A&B

E. All of A-C

Binary Search Trees

- What are the operations supported?
- What are the running times of these operations?

- How do you implement the BST i.e. operations supported by it?

e
Operations supported by Sorted arrays and Binary Search Trees (BST)

Example keys: 42, 32, 45, 12, 41, 50

Operations

Min

Max

Successor
Predecessor

Search

Insert

Delete

Print elements in order

Binary Search Tree — What is it?

« Each node:

@ « stores a key (k)
* has a pointer to left child, right child
@ @ and parent (optional)

« Satisfies the Search Tree Property

@ 0 @ For any node,

Keys in node’s left subtree < Node’s key
Node’s key < Keys in node’s right subtree

Do the keys have to be integers?

Which of the following is/are a binary search tree?

€

D.
@ @ E. More than one of these

e
BSTs allow efficient search!

Start at the root;
e + Trace down a path by comparing k with the key of the
current node X:
9 @ - If the keys are equal: we have found the key
- If k <key[x] search in the left subtree of x
@ 0 e - If k> key[x] search in the right subtree of x

@ Search for 41, then search for 53
A=)

Insert *Insert 40

e - Search for the key
e e - Insert at the spot you expected to find it

e
Min/Max

Which of the following described the algorithm to
@ find the maximum value in the BST?

e A. Follow right child pointers from the root, until a node
with no right child is encountered, return that node’s key

Q 0 Q B. Follow left child pointers from the root, until a node

with no left child is encountered, return that node’s key

C. Traverse to the last level in the tree and traverse the
tree left to right, return the key of the last node in the last
level.

Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

class BSTNode {

public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;

BSTNode (1int d) : data(d) {
left = right = parent = nullptr;
}
}i

Max: find the maximum key value in a BST

Alg: int BST: :max ()

(15

O (18
() Q@ @&
ONONN®

Maximum = 20

Min: find the minimum key value in a BST

Alg: int BST: :min () {

Start at the root.

Follow child (6) (18)
pointers from the root, until e GG
a node with no left child is @

encountered. e ° @

Return the key of that node e

b

Min=?

Traversing down the tree

Suppose n is a pointer to the root. What is the output
of the following code:

n=
=

n =
=

cout<<n->data<<endl;

n->left;

n->right;

A. 42

B.
C.

32
12

‘41

E. Segfault

RSTNede ¥+ M =

(oot

" 2nk bol iz Je03

Ror Node M = Coot |

L e ();

while (‘ b

- N ‘(‘3"\(’

"(\‘4 éml

{@;\’L\‘f A

L]

Traversing up the tree

Suppose n 1s a pointer to the node with value 50.

What is the output of the following code:
| n = n->parent;
n = n->parent;

n = n->left;

< cout<<n->data<<endl;
A. 42
(D 32
C. 12
D. 45
E. Segfault

e
In order traversal: print elements in sorted order

Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)
2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)

(Te (.‘ﬂ')

e

L'z b{‘dé(

12 32 U\ y 4§ Je

e
Pre-order }raversal: nice way to linearize your tree!
- Algorithm Preorder(tree)

| 1. Visit the root.
@ @ 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Q 0 50 TL(U2) Te (U2

@@ ©

ko, 24 12, WY,

b othe?

us, 50

Post-order traversal: use to recursively clear the tree!

e Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
@ 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
e 3. Visit the root.

How ¢ lab 02 gong 2

A Done

B P’\a\«iﬂﬂ progeess on vade o Snich!
- S’Nuﬂs\ivxs

D Yoven} crarcte O

6%@ Fous '\179&7 “Fh \I';'g;

Predecessor: Next smallest element
int bst::predecessor(BSTNodex n, igziialue) const{

if(!'n) return std::numeric_limits<int>::min();
if(n—>left){
< //Case 1

return __YV\AX (Y\—') \%")

telse{
//Case 2

AWoverte patent

}

Fill in the blank for case 1 using min/max helper functions

* What is the predecessor of ;2?2?: g" ;;:}?)Ct

- What is the predecessor of fé? C.max(n)

min(n->1left)
ax(n—>left)
-

Successor: Next largest element

- What is the successor of 457
- What is the successor of 507
- What is the successor of 607

Delete: Case 1 - Node is a leaf node

e - Set parent’s (left/right) child pointer to null
* Delete the node

L
Delete: Case 2 - Node has only one child

- Replace the node by its only child

Delete: Case 3 - Node has two children

, - Can we still replace the node by one of its
e % children? Why or Why not?

Swop Hhe ey %ﬁm nod e
WA VS ?fzdeas.wt /.Succe§6v

Delere Hhe M0d® ar Hu new

cpot (Ocgaulis Yo Cam /w2

