

RUNNING TIME ANALYSIS
Problem Solving with Computers-II

Performance questions
2

• How efficient is a particular algorithm?
• CPU time usage (Running time complexity)
• Memory usage (Space complexity)
• Disk usage
• Network usage

• Why does this matter?

• Computers are getting faster, so is this really important?
• Data sets are getting larger – does this impact running times?

How can we measure time efficiency of algorithms?

• One way is to measure the absolute running time

• Pros? Cons?

clock_t t;
t = clock();

//Code under test

t = clock() - t;

Which implementation is significantly faster ?

double Fib(int n){
 double *fib = new double[n];
 fib[0] = fib[1] = 1;
 for(int i = 2; i < n; i++){
 fib[i] = fib[i-1] + fib[i-2];
 }
 return fib[n-1];
}

A.

double Fib(int n){
 if(n <= 2) return 1;
 return Fib(n-1) + Fib(n-2);
}

B.

C. Both are almost equally fast

A better question: How does the running time grow as a function of
input size

The “right” question is: How does the running time grow?
E.g. How long does it take to compute Fib(200) recursively?
….let’s say on….

double Fib(int n){
 double *fib = new double[n];
 fib[0] = fib[1] = 1;
 for(int i = 2; i < n; i++){
 fib[i] = fib[i-1] + fib[i-2];
 }
 return fib[n-1];
}

double Fib(int n){
 if(n <= 2) return 1;
 return Fib(n-1) + Fib(n-2);
}

NEC Earth Simulator

Can perform up to 40 trillion operations per second.

The running time of the recursive implementation
The Earth simulator needs 292 seconds for F200.

Time in seconds Interpretation
 210 17 minutes

 220 12 days

 230 32 years

 240 cave paintings

 270 The big bang!

Let’s try calculating F200
using the iterative
algorithm on my laptop…..

Subgoal 1: Focus on the impact of the algorithm:
Simplify the analysis of running time by ignoring “details” which may
be an artifact of the underlying implementation

Subgoal 1: Focus on the impact of the algorithm:
Simplify the analysis of running time by ignoring “details” which may
be an artifact of the underlying implementation

• Subgoal 2: Focus on trends as input size increases
(asymptotic behavior):

How does the running time of an algorithm increases with the size of
the input in the limit (for large input sizes)

• Every computer can do some primitive
operations in constant time:
• Data movement (assignment)

• Control statements (branch, function
call, return)

• Arithmetic and logical operations

• By inspecting the pseudo-code, we can
count the number of primitive
operations executed by an algorithm

Subgoal 1: Focus on the impact of the algorithm:
Count operations instead of absolute time!

double Fib(int n){
 double *fib = new double[n];
 fib[0] = fib[1] = 1;
 for(int i = 2; i < n; i++){
 fib[i] = fib[i-1] + fib[i-2];
 }
 return fib[n-1];
}

Subgoal 1: Focus on the impact of the algorithm:
Count operations instead of absolute time!

double Fib(int n){
 double *fib = new double[n];
 fib[0] = fib[1] = 1;
 for(int i = 2; i < n; i++){
 fib[i] = fib[i-1] + fib[i-2];
 }
 return fib[n-1];
}

Subgoal 1: Focus on the impact of the algorithm:
Count operations instead of absolute time!

double Fib(int n){
 double *fib = new double[n];
 fib[0] = fib[1] = 1;
 for(int i = 2; i < n; i++){
 fib[i] = fib[i-1] + fib[i-2];
 }
 return fib[n-1];
}

procedure Fib(n: positive integer)
 Create an array fib[1..n]
 fib[1] := 1
 fib[2] := 1
 for i := 3 to n:
 fib[i] := fib[i-1] + fib[i-2]
 return fib[n]

Can we count number of operations on the pseudo code version of the Fib function?
A. Yes
B. No

Our first goal for analyzing runtime was to focus on the impact of the
algorithm. What was our second subgoal?

A. Focus on optimizing the algorithm so that it can be efficient
B. Focus on measuring the time it takes to run the algorithm by time
stamping our code.
C. Focus on trends as input size increases (asymptotic behavior)

Orders of growth
An order of growth is a set of
functions whose asymptotic growth
behavior is considered equivalent.
For example, 2n, 100n and n+1
belong to the same order of growth

Which of the following functions
has a higher order of growth?

A. 50n

B. 2n2

