
 
RUNNING TIME ANALYSIS
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Performance questions
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• How efficient is a particular algorithm? 
• CPU time usage   (Running time complexity) 
• Memory usage     (Space complexity) 
• Disk usage 
• Network usage 

  
• Why does this matter? 

• Computers are getting faster, so is this really important? 
• Data sets are getting larger – does this impact running times?




























































How can we measure time efficiency of algorithms?

• One way is to measure the absolute running time  

• Pros? Cons?

clock_t t; 
t = clock(); 

//Code under test  

t = clock() - t;




























































Which implementation is significantly faster ?

double Fib(int n){ 
    double *fib = new double[n]; 
    fib[0] = fib[1] = 1;  
    for(int i = 2; i < n; i++){ 
     fib[i] = fib[i-1] + fib[i-2]; 
    } 
    return fib[n-1]; 
}

A.

double Fib(int n){ 
   if(n <= 2) return 1; 
   return Fib(n-1) + Fib(n-2); 
}

B. 

C. Both are almost equally fast




























































A better question: How does the running time grow as a function of 
input size

The “right” question is: How does the running time grow? 
E.g. How long does it take to compute Fib(200) recursively? 
….let’s say on….

double Fib(int n){ 
    double *fib = new double[n]; 
    fib[0] = fib[1] = 1;  
    for(int i = 2; i < n; i++){ 
     fib[i] = fib[i-1] + fib[i-2]; 
    } 
    return fib[n-1]; 
}

double Fib(int n){ 
   if(n <= 2) return 1; 
   return Fib(n-1) + Fib(n-2); 
}




























































NEC Earth Simulator

Can perform up to 40 trillion operations per second.




























































The running time of the recursive implementation
The Earth simulator needs 292 seconds for F200. 

Time in seconds  Interpretation 
 210      17 minutes 

 220    12 days 

 230    32 years 

 240    cave paintings 

  270    The big bang! 

Let’s try calculating F200 
using the iterative 
algorithm on my laptop…..




























































Subgoal 1: Focus on the impact of the algorithm:  
Simplify the analysis of running time by ignoring “details” which may 
be an artifact of the underlying implementation




























































Subgoal 1: Focus on the impact of the algorithm:  
Simplify the analysis of running time by ignoring “details” which may 
be an artifact of the underlying implementation 

• Subgoal 2: Focus on trends as input size increases 
(asymptotic behavior):  

How does the running time of an algorithm increases with the size of 
the input in the limit (for large input sizes)




























































• Every computer can do some primitive 
operations in constant time: 
• Data movement (assignment) 

• Control statements (branch, function 
call, return) 

• Arithmetic and logical operations 

• By inspecting the pseudo-code, we can 
count the number of primitive 
operations executed by an algorithm

Subgoal 1: Focus on the impact of the algorithm:  
Count operations instead of absolute time!

double Fib(int n){ 
    double *fib = new double[n]; 
    fib[0] = fib[1] = 1;  
    for(int i = 2; i < n; i++){ 
     fib[i] = fib[i-1] + fib[i-2]; 
    } 
    return fib[n-1]; 
}




























































Subgoal 1: Focus on the impact of the algorithm:  
Count operations instead of absolute time!

double Fib(int n){ 
    double *fib = new double[n]; 
    fib[0] = fib[1] = 1;  
    for(int i = 2; i < n; i++){ 
     fib[i] = fib[i-1] + fib[i-2]; 
    } 
    return fib[n-1]; 
}




























































Subgoal 1: Focus on the impact of the algorithm:  
Count operations instead of absolute time!

double Fib(int n){ 
    double *fib = new double[n]; 
    fib[0] = fib[1] = 1;  
    for(int i = 2; i < n; i++){ 
     fib[i] = fib[i-1] + fib[i-2]; 
    } 
    return fib[n-1]; 
}

procedure Fib(n: positive integer) 
 Create an array fib[1..n] 
 fib[1] := 1 
 fib[2] := 1 
 for i := 3 to n: 
    fib[i] := fib[i-1] + fib[i-2] 
 return fib[n] 

Can we count number of operations on the pseudo code version of the Fib function? 
A. Yes 
B. No 




























































Our first goal for analyzing runtime was to focus  on the impact of the 
algorithm. What was our second subgoal? 

A. Focus on optimizing the algorithm so that it can be efficient 
B. Focus on measuring the time it takes to run the algorithm by time 
stamping our code.  
C. Focus on trends as input size increases (asymptotic behavior) 




























































UCSB CS & CE

Research Opportunities
Internship and Job Advice
Major Field Electives
Graduate School Advice
General Networking

Come speak to your professor about research opportunities, internships, 
electives, grad shcools, or any topic related to CS and CE at UCSB!

Additionally, for CS students only, attending this event can satisfy 
and complete your Major Elective Approval requirement, which is a 

requirement for graduation.

OCT 25








































































































































Orders of growth
An order of growth is a set of 
functions whose asymptotic growth 
behavior is considered equivalent.  
For example, 2n, 100n and n+1 
belong to the same order of growth 

Which of the following functions 
has a higher order of growth? 

A. 50n 

B. 2n2




























































Big-O notation
• Big-O notation provides an upper bound on the order of growth of a function 

































































































































































































Definition of Big-O
f(n) and g(n) map positive integer inputs to positive reals. 

We say f = O(g) if there is a constant c > 0  and k > 0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g) 
means that “f grows no faster than g”




























































Express in Big-O notation
1. 10000000  
2. 3*n      
3. 6*n-2      
4. 15*n + 44 
5. 50*n*log(n) 
6. n2     
7. n2-6n+9   
8. 3n2+4*log(n)+1000 
9. 3n + n3  +log(3*n)

For polynomials, use only leading term, ignore coefficients: linear, quadratic




























































Common sense rules of Big-O
1. Multiplicative constants can be omitted: 14n2 becomes n2 .  

2. na dominates nb if a > b: for instance, n2 dominates n.  

3. Any exponential dominates any polynomial: 3n dominates n5 (it even 
dominates 2n ).




























































procedure Fib(n: positive integer) 
 Create an array fib[1..n] 
 fib[1] := 1 
 fib[2] := 1 
 for i := 3 to n: 
    fib[i] := fib[i-1] + fib[i-2] 
 return fib[n]

Big-O analysis of iterative fibonacci 




























































recursive fibonacci: some observations

procedure F(n: a positive integer) 
    if(n <= 2) return 1 

 return F(n-1) + F(n-2)
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• Path – a sequence of (zero or more) connected nodes. 
• Length of a path - number of edges traversed on the path 
• Height of node – Length of the longest path from the node to a leaf node. 
• Height of the tree - Length of the longest path from the root to a leaf node.




























































Types of Binary Trees
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Complete Binary Tree: Every level, except 
possibly the last, is completely filled, and all 
nodes on the last level are as far left as possible 

Full Binary Tree: A complete binary tree whose 
last level is completely filled 




























































Big O analysis of recursive Fibonacci

procedure F(n: a positive integer) 
    if(n <= 2) return 1 

 return F(n-1) + F(n-2)






































































































































































































































































































































procedure max(a1,a2, … an: integers) 

   max:= a1 

     for i:= 2 to n 

  if max < ai  
max:= x 

return max{max is the greatest element}

A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 

E. None of the above

What is the Big-O running time of max?




























































What is the Big O running time of sum()?

/* n is the length of the array*/ 
int sum(int arr[], int n) 
{   
     int result=0;   
     for(int i=0; i < n; i+=2)     
           result+=arr[i];   
     return result; 
}

A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 

E. None of the array




























































What is the Big O running time of sum()?
/* n is the length of the array*/ 
int sum(int arr[], int n) 
{   
      int result = 0;  
      for(int i=1; i < n; i=i*2)     
              result+=2*arr[i];   
       return result; 
}

A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 

E. None of the array




























































What is the Big O running time of sum()?
/* n is the length of the array*/ 
int sum(int arr[], int n) 
{   
       int result = 0; 
       for(int i=0; i < n; i=i+2)     
              result+=arr[i];   
       for(int i=1; i < n; i=i*2)     
              result+=2*arr[i];   
       return result; 
}

A. O(n2) 

B. O(n) 
C. O(n/2) 
D. O(log n) 

E. None of the array


























































Next time
• Running time analysis : best case and worst case 
• Running time analysis of Binary Search Trees
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