BEST & WORST CASE ANALYSIS
RUNNING TIME OF BST OPERATIONS

Problem Solving with Computers-I| C l '
1ude "’OS:;: a::d;
‘\:’::nq “amesP -
wa'r“l.ku a3 "

e
Definition of Big-O

f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant ¢ > 0 and k>0 such that
f(n) <c - g(n) for all n >=k.

100

90

f O(g) 80 3(‘1\\
means that “f grows no faster than g”

f-0(g) fo-0@n) nz

30} 2n+20

20

101

0

1 1 1 1 | 1 1 1
1 2 3 4 5 7 8 9 10

Big-Omega

e f(n) and g(n) map positive integer inputs to positive reals.

We say f = Q(g) if there are constants ¢ > 0, k>0 such that
’ c-g(n)<f(n) forn>= k

f=0Q(g)
means that “f grows at least as fast as g”

fe = S (5t)]

30f 2n+20

4(40

gon>

10

e
Big-Theta

e f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there are constants c,, ¢,, k such that
0 <c,g(n) < f(n) <c,g(n), for n >=k

%(1\\ = @ (8 ())
’F(n) = GCn .QO& (Y\)
:d Running time

= Ol Lo, “\A/
“kﬁk\r&\-u wpyer bousd Problem Size (n)

e
Best case and worst case analysis

What is the Big-O running time of search in a sorted array of size n?
N S Very afyC

...using linear search?

Pest cane: looling for e

-~ W
woay (eax: Losheg il too o XEY 3
...using binary search? o ™ Jolue 0 o domn)

Wt Croe : JoolLe (S’”

@ 13114 25|33 |43 |51 |53 |64 |72|84|93|95|96 | 97
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Worst case analysis of binary search

bool binarySearch(int arr[], int element, int n){
//Precondition: input array arr 1s sorted in ascending order

end -begin

int begin = 0;
Cs)int end = n—1;’] C\
int mid;
hile (begin <= end){
mid = (end + begin)/2;
TT(arr[mid]==element){
return true; =~

C Yelse if (arr[mid]< element){
L begin = mid

elsed{

end = mid @;
jl

}
}

return false;

}

Txtabion noe

Thecakon No

k

Cu e
quo Ya 2] 8

fefres

T e

N\
3
L
\
oS
|
|,
<
\
~
pa
_/

nunbes

V)
Ry oo™

e ean g e Lohdle Loop
d\t‘@mm\% K Qo (nH)

N

Punning At AN Coqrda 00 a¥ory A Bie N

C|>c¢‘,

= O oogn) (B def 585D

e
Best case and worst case : sorted array

Begt cone werst Caodr
- Search (Binary search) owud o 0ogm)
- Min/Max O(tN 6C1D
- Median 0CD oCiD
- Successor/Predecessor o CV oCl)
- Insert ol D HIGAR
- Delete oC o(n)

6 1314|2533 |43 |51 /53|64 |72|84|93|95|96 | 97
1 2 3 4 5 6 7 8 9 10 M 12 13 14

Path — a sequence of (zero or more) connected nodes.

Length of a path - number of edges traversed on the path

Height of node — Length of the longest path from the node to a leaf node.

Height of the tree - Length of the Iongest path from the root to a leaf node.
>

& @ @@

“Dh &£, s

'ROSN H&%‘* 3

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45

_-" - - -

..!@i"

B
BST search - best case 0

@ Given a BST with N nodes, in the best
case, which key would be searching for?

@ @ (A) root node (e.g. 42)
0 Q B. any leaf node (e.g. 12 or 33 or 50)

C. leaf node that is on the longest path
@ from the root (e.g. 33)

D. any key, there is no best or worst case

B
BST search - worst case

Given a BST with N nodes, in the worst

case, which key would be searching for?
A. root node (e.g. 42)
B. leaf node (e.g. 12 or 41 or 50)

@Ieaf node that is on the longest path
from the root (e.g. 33)

D. a key that doesn't exist in the tree

Ty = O)
H: Heigur g W PEE

Worst case Big-O of search, insert, min, max

@ Given a BST of height H with N nodes,
what is the running time complexity of
@ @ searching for a key (in the worst case)?

<Xa o)
Q 0 @ 7 B. O(log H)
v"C. O(H) .

D. O(H*log H) X

= O(N)
-7

BST operations (worst case)

@ Given a BST of height H and N nodes,
which of the following operations has a

() (s5) complexity of O(H)?
@ 0 Q A. rr_l_inormax

7 B. insert
o C. pr_édecessor Or successor
D. delete
—
6/ @AII of the above

/

Big O of traversals
e In Order: O M)
a e Pre Order: 0(n)
Post Order: (O(N)

Types of BSTs

Level O e

Level 1

Yoo
Balanced BST: Aﬂ\j RCT Whefe
‘.\:;ugm 3 0 (fQoyn)

Complete Binary Tree: Every level, except
possibly the last, is completely filled, and all

ﬁ?{ow@‘r c%a d’u\l
bﬁ'v\a»u,‘ 6e<

nodes on the last level are as far left as possible

Full Binary Tree: A complete binary tree whose
last level is completely filled

e
Relating H (height) and n (#nodes) for a full binary tree

Ne dexlyed dnis fent o dhw

Level O
P‘wim \eckure -
: Level 1
«ko;ac.& % ,ku\y \my\o\“‘ ee @ R
. o{ " |) Level 2
Sum % Ahe nunnbes 9 noden ’jﬂ‘m

Lened o to Levd K woust br o9

den " agee S
um Q| A %«m oty
< A wamber d% no

> o balowveed tree
c 9o+ *2 * "7 S| / g e
_ S coune

Thel<heve . Q. ~\) =

Balanced trees

- Balanced trees by definition have a height of O(log n)

- A completely filled tree is one example of a balanced tree

- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

