
BEST & WORST CASE ANALYSIS
RUNNING TIME OF BST OPERATIONS

Problem Solving with Computers-II

Definition of Big-O
f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant c > 0 and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g)
means that “f grows no faster than g”

Big-Omega
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Ω(g) if there are constants c > 0, k>0 such that
c · g(n) ≤ f(n) for n >= k

f = Ω(g)
means that “f grows at least as fast as g”

Big-Theta
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Θ(g) if there are constants c1, c2, k such that
0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), for n >=k

Running time

Problem Size (n)

Best case and worst case analysis

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

What is the Big-O running time of search in a sorted array of size n?

…using linear search?

…using binary search?

Worst case analysis of binary search
6

bool binarySearch(int arr[], int element, int n){
//Precondition: input array arr is sorted in ascending order
 int begin = 0;
 int end = n-1;
 int mid;
 while (begin <= end){
 mid = (end + begin)/2;
 if(arr[mid]==element){
 return true;
 }else if (arr[mid]< element){
 begin = mid + 1;
 }else{
 end = mid - 1;

 }
 }
 return false;
}

Best case and worst case : sorted array

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

• Search (Binary search)
• Min/Max
• Median
• Successor/Predecessor
• Insert
• Delete

8

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of (zero or more) connected nodes.
• Length of a path - number of edges traversed on the path
• Height of node – Length of the longest path from the node to a leaf node.
• Height of the tree - Length of the longest path from the root to a leaf node.

9

BST search - best case

Given a BST with N nodes, in the best
case, which key would be searching for?
A. root node (e.g. 42)
B. any leaf node (e.g. 12 or 33 or 50)
C. leaf node that is on the longest path

from the root (e.g. 33)
D. any key, there is no best or worst case

42

32

12

45

41 50

33

10

BST search - worst case

Given a BST with N nodes, in the worst
case, which key would be searching for?
A. root node (e.g. 42)
B. leaf node (e.g. 12 or 41 or 50)
C. leaf node that is on the longest path

from the root (e.g. 33)
D. a key that doesn’t exist in the tree

42

32

12

45

41 50

33

11

Worst case Big-O of search, insert, min, max

Given a BST of height H with N nodes,
what is the running time complexity of
searching for a key (in the worst case)?
A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

12

BST operations (worst case)

Given a BST of height H and N nodes,
which of the following operations has a
complexity of O(H)?
A. min or max
B. insert
C. predecessor or successor
D. delete
E. All of the above

42

32

12

45

41 50

13

Big O of traversals

In Order:
Pre Order:
Post Order:

42

32

12

45

41 50

Types of BSTs

14

Balanced BST:

Complete Binary Tree: Every level, except
possibly the last, is completely filled, and all
nodes on the last level are as far left as possible

Full Binary Tree: A complete binary tree whose
last level is completely filled

42

32

12

45

41 5043

Level 0

Level 1

Level 2

Relating H (height) and n (#nodes) for a full binary tree
Level 0

Level 1

Level 2

……

15

Balanced trees
• Balanced trees by definition have a height of O(log n)
• A completely filled tree is one example of a balanced tree
• Other Balanced BSTs include AVL trees, red black trees and so on
• Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

