BEST & WORST CASE ANALYSIS
RUNNING TIME OF BST OPERATIONS
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Definition of Big-O

f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant ¢ > 0 and k>0 such that
f(n) <c - g(n) for all n >=k.
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Big-Omega

e f(n) and g(n) map positive integer inputs to positive reals.

We say f = Q(g) if there are constants ¢ > 0, k>0 such that
’ c-g(n)<f(n) forn>= k

f=0Q(g)
means that “f grows at least as fast as g”
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Big-Theta

e f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there are constants c,, ¢,, k such that
0 <c,g(n) < f(n) <c,g(n), for n >=k
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Best case and worst case analysis

What is the Big-O running time of search in a sorted array of size n?
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Worst case analysis of binary search

bool binarySearch(int arr[], int element, int n){
//Precondition: input array arr 1s sorted in ascending order

end -begin

int begin = 0;
Cs)int end = n—1;’] C\
int mid;
hile (begin <= end){
mid = (end + begin)/2;
TT(arr[mid]==element){
return true; =~

C Yelse if (arr[mid]< element){
L begin = mid

elsed{

end = mid @;
jl

}
}

return false;

}
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Best case and worst case : sorted array
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Path — a sequence of (zero or more) connected nodes.

Length of a path - number of edges traversed on the path

Height of node — Length of the longest path from the node to a leaf node.

Height of the tree - Length of the Iongest path from the root to a leaf node.
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BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45
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B
BST search - best case 0

@ Given a BST with N nodes, in the best
case, which key would be searching for?

@ @ (A) root node (e.g. 42)
0 Q B. any leaf node (e.g. 12 or 33 or 50)

C. leaf node that is on the longest path
@ from the root (e.g. 33)

D. any key, there is no best or worst case
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BST search - worst case

Given a BST with N nodes, in the worst

case, which key would be searching for?
A. root node (e.g. 42)
B. leaf node (e.g. 12 or 41 or 50)

@Ieaf node that is on the longest path
from the root (e.g. 33)

D. a key that doesn't exist in the tree
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Worst case Big-O of search, insert, min, max

@ Given a BST of height H with N nodes,
what is the running time complexity of
@ @ searching for a key (in the worst case)?

<Xa o)
Q 0 @ 7 B. O(log H)
v"C. O(H) .

D. O(H*log H) X

= O(N)
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BST operations (worst case)

@ Given a BST of height H and N nodes,
which of the following operations has a

() (s5) complexity of O(H)?
@ 0 Q A. rr_l_inormax

7 B. insert
o C. pr_édecessor Or successor
D. delete
—
6/ @AII of the above
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Big O of traversals
e In Order: O M)
a e Pre Order: 0(n)
Post Order: (O(N)



Types of BSTs

Level O e
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Complete Binary Tree: Every level, except
possibly the last, is completely filled, and all
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nodes on the last level are as far left as possible

Full Binary Tree: A complete binary tree whose
last level is completely filled
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Relating H (height) and n (#nodes) for a full binary tree
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Balanced trees

- Balanced trees by definition have a height of O(log n)

- A completely filled tree is one example of a balanced tree

- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: https://visualgo.net/bn/bst



https://visualgo.net/bn/bst

