RUNNING TIME ANALYSIS OF
BINARY SEARCH TREES

Problem Solving with Computers-I| C++

e
What is the Big O of sumArray2

/* N is the length of the array*/

A.CKNZ) int sumArray2(int arr[], int N)
5. O(N) { .

int result=0;
C. 82:\1/2?\1) for(int i=1; 1 < N; 1i=1%*2)
. O(log result+=arr[i];
E. None of the array return result;

}

Running time of operations on sorted arrays:
Discuss best case, worst case, average case

*Min :

- Max:

- Median:

* Successor:

- Predecessor:
- Search:
Insert :

* Delete:

Binary Search Trees

- WHAT are the operations supported?
- HOW do we implement them?
- WHAT are the (worst case) running times of each operation?

Visualize BST operations: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

Height of the tree

@ Many different BSTs are possible for the same set of keys
“ Examples for keys: 12, 32, 41, 42, 45

« Path — a sequence of nodes and edges connecting a node with a descendant.

* A path starts from a node and ends at another node or a leaf
« Height of node — The height of a node is the number of edges on the longest

downward path between that node and a leaf.

Worst case Big-O of search

e -Given a BST of height H and N
nodes, what is the worst case
a e complexity of searching for a key?
e 0 @ A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

Worst case Big-0 of insert

e -Given a BST of height H and N
nodes, what is the worst case
a e complexity of inserting a key?
e 0 @ A. O(1)
B. O(log N)
C. O(H)
D. O(log H)

Worst case Big-O of min/max

e -Given a BST of height H and N
nodes, what is the worst case
a e complexity of finding the minimum

or maximum key?
0 0 @ A. O(1)

Worst case Big-O of predecessor/successor

e -Given a BST of height H and N
nodes, what is the worst case
a e complexity of finding the minimum

or maximum key?
0 0 @ A. O(1)

Worst case Big-O of delete

e -Given a BST of height H and N

nodes, what is the worst case
a e complexity of deleting the key

(assume no duplicates)?
e 0 @ - 0O(1)

Big O of traversals

e In Order:
Pre Order:
a e Post Order:

Worst case analysis

Are binary search trees really faster than linked lists for finding elements?
- A. Yes
- B. No

data:| 1 data:| 2 data:
next: »next: .next:lzl

As

Ak

. B
Completely filled binary tree

Level 0 Nodes at each level have exactly two
children, except the nodes at the last
Level 1

level
Level 2 0 ¥

Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level O

Level 1

Level 2

How many nodes are on level L in a completely filled binary search tree?
A.2

B.L

C.2"L

D.2L

Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level O

Level 1

Level 2

Finally, what is the height (exactly) of the tree in terms of N?

Balanced trees

- Balanced trees by definition have a height of O(log N)
- A completely filled tree is one example of a balanced tree
- Other Balanced BSTs include AVL trees, red black trees and so on

- Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

Summary of operations

Sorted Array |Binary Search Tree |Linked List
Min

Max

Median
Successor
Predecessor
Search
Insert
Delete

CHANGING GEARS: C++STL

- The C++ Standard Template Library is a very handy set of three built-in
components:

- Containers: Data structures
- lterators: Standard way to search containers
- Algorithms: These are what we ultimately use to solve problems

C++ STL container classes

array
vector

forward list

list

stack

queue

priority dqueue

set

multiset (non unique keys)
deque

unordered set

map

unordered map

multimap

bitset

