RUNNING TIME ANALYSIS OF
BINARY SEARCH TREES

Problem Solving with Computers-II C++

4308 "
' xncw(:‘eamesvace
usiy? R
‘9 m covt g,
cetvr®
Y

e
What is the Big O of sumArray2

/* N is the length of the array*/
A O(N2) int sumArray2(int arr[], int N)
B. O N { i: ').'("L'
(N) {int result=0;

C. O(N/2) for(int i=1; i < N; |i=i*2)
@O(Iog N) result+=arr[i];
. None of the array return result;

Running time of operations on sorted arrays:
Discuss best case, worst case, average case

Min: O
- Max: o)
-Median: O(1)

-Successor: O(1) »
-Predecessor: O(t) Nave bneot- sanrcle | Baoary

-Search: \o(\) \o(N)\ RORECS
‘Insert: oC(N) Wmmg Bug- @R |3, s¢-caat umw‘@

‘Delete: oA)
Loe W
(f‘ ~+ G S

ScafdA

Binary Search Trees

- WHAT are the operations supported?
- HOW do we implement them?
* WHAT are the (worst case) running times of each operation?

Visualize BST operations: https://visualgo.net/bn/bst

Height of the tree H CCZC\A’

@ Many different BSTs are possible for the same set of keys
Examples for keys: 12 32 41 42 45 @\

D
@ K\/‘(4 Q@

' a =
32 - u2— Yy @ !

» Path — a sequence of nod6€%hd edges connecting a node with a descendant.

» A path starts from a node and ends at another node or a leaf

» Height of node — The height of a node is the number of edges on the longest
downward path between that node and a leaf.

&/

Worst case Big-O of search

() - Given a BST of height H and N
) nodes, what is the worst case

@ e complexity of searching for a key?
7
@ @ ot
B. O(log N)
O(H)
D. O(log H)

@ /@\

Worst case Big-O of insert

() - Given a BST of height H and N
T nodes, what is the worst case
/@ e complexity of inserting a key?
G 0 6 A O(1)
B. O(log N)
O(H)

D. O(log H)

Worst case Big-O of min/max

() - Given a BST of height H and N
nodes, what is the worst case
@ e complexity of finding the minimum
G or maximum key?
0 @ A. O(1)
B. O(log N)

B Cp

@ /\D D O(log H)

Worst case Big-O of predecessor/successor

() - Given a BST of height H and N
nodes, what is the worst case
@ e complexity of finding the minimum
G or maximum key?
0 @ A. O(1)
B. O(log N)

(o)
D. O(log H)

Worst case Big-O of delete

() - Given a BST of height H and N
nodes, what is the worst case
@ e complexity of deleting the key

(assume no duplicates)?
G 0 @ A. O(1)

D. O(log H)

e
Big O of traversals

In Order:
Pre Order:/% O (N)

Post Order:

Worst case analysis

Are binary search trees really faster than linked lists for finding elements?
< A. Yes
- B. No

|data:| 1 data:‘ 2 data:| 3
. next: »next: »next: 7

Completely filled binary tree

Level O

Level 1

Level 2

Nodes at each level have exactly two
children, except the nodes at the last
level

]
Relating H (height) and N (#nodes) 4 242+ "-2 =

find is O(H), we want to find a f(N) = H 2*3?‘
L(,\fd Y-) nocA Level 0
@) A
\ L Level 1
\—\
;3 H . \. Level 2
A 2
How many nodes are on level L in a completely filled binary search treﬁ?
AL 2° |+ 2+uxB4-"- 5 =0
| — N
C.2"L : _ HA+
D.2L 79 = 2 -\ = N

H = @"5(’\"“) -

Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level O

Level 1

H - QOb (’\[J(\> -

Level 2

Finally, what is the height (exactly) of the tree in terms of N?

O (Los N)

Balanced trees

- Balanced trees by definition have a height of O(log N)

- A completely filled tree is one example of a balanced tree

- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: https://visualgo.net/bn/bst

Summary of operations

Batanced (ung kD
Sorted Array |Binary Search Tree
Min

0(0) O(Log ™) O (™)
Max o () o [Log ™) oLP)
Median 0(1) — oL™D
Successor O(t) O (1og) o(nN)
Predecessor o) O (L%N) o) (™)
Search 0 (Ros®) Bins, DCMJN) 0CN)D
Insert O () 0 (Qeog) o)
Delete o>CP) ollo™ pey) (i Yo ler
feint DO\ o) polcts w20

CHANGING GEARS: C++STL

* The C++ Standard Template Library is a very handy set of three built-in
components:

+ Containers: Data structures
« Iterators: Standard way to search containers
+ Algorithms: These are what we ultimately use to solve problems

C++ STL container classes

array

vector

forward list
list

stack

queue

priority queue
set

multiset (non unique keys)
deque
unordered set
map
unordered map
multimap
bitset

