
RUNNING TIME ANALYSIS OF 
BINARY SEARCH TREES 

Problem Solving with Computers-II

 

PAOI Monday Iosept

h



What is the Big O of sumArray2
/* N is the length of the array*/ 
int sumArray2(int arr[], int N) 
{   
       int result=0;   
       for(int i=1; i < N; i=i*2)     
              result+=arr[i];   
       return result; 
}

A. O(N2) 

B. O(N) 
C. O(N/2) 
D. O(log N) 

E. None of the array

f i i 12

O D

It 1 t 30 logan l



Running time of operations on sorted arrays: 
Discuss best case, worst case, average case

• Min :  
• Max:  
• Median:  
• Successor:  
• Predecessor:  
• Search: 
• Insert :  
• Delete:

OCI
0117
OCI
04
OU Naive linear search BinarySearch

Ties
OCN

c t ca WI



Binary Search Trees
• WHAT are the operations supported? 

• HOW do we implement them? 

• WHAT are the (worst case) running times of each operation? 

Visualize BST operations: https://visualgo.net/bn/bst

!4



Height of the tree

!5

Many different BSTs are possible for the same set of keys 
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of nodes and edges connecting a node with a descendant. 
• A path starts from a node and ends at another node or a leaf 
• Height of node – The height of a node is the number of edges on the longest 

downward path between that node and a leaf.

Height

To.io ioFn uQQ.qA 2
11 4

2 42 41
l



!6

Worst case Big-O of search
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of searching for a key? 

A. O(1) 
B. O(log N) 
C. O(H) 
D. O(log H)

42

32

12

45

41 50

l l

l

O

soo0



!7

Worst case Big-O of insert
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of inserting a key? 

A. O(1) 
B. O(log N) 
C. O(H) 
D. O(log H)

42

32

12

45

41 50
ii

O



!8

Worst case Big-O of min/max
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of finding the minimum 
or maximum key? 

A. O(1) 
B. O(log N) 
C. O(H) 
D. O(log H)

42

32

12

45

41 50

380 O
Exo
o 368



!9

Worst case Big-O of predecessor/successor

• Given a BST of height H and N 
nodes, what is the worst case 
complexity of finding the minimum 
or maximum key? 

A. O(1) 
B. O(log N) 
C. O(H) 
D. O(log H)

42

32

12

45

41 50

0



!10

Worst case Big-O of delete
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of deleting the key 
(assume no duplicates)? 

A. O(1) 
B. O(log N) 
C. O(H) 
D. O(log H)

42

32

12

45

41 50

0



!11

Big O of traversals

In Order: 
Pre Order: 
Post Order:

42

32

12

45

41 50

I focus



Worst case analysis
Are binary search trees really faster than linked lists for finding elements? 
• A. Yes 
• B. No

data:
next:

1 data:
next:

2 data:
next:

3

!12



Completely filled binary tree

42

32

12

45

41 50

!13

Nodes at each level have exactly two 
children, except  the nodes at the last  
level

43

Level 0

Level 1

Level 2

en

th r r

i 8686868 nodes
reveen



Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
How many nodes are on level L in a completely filled binary search tree? 
A.2 
B.L 
C.2*L 
D.2L

!14

1 121 2 272552
Level no opnode

28 I

0 I
1 2
3 4

H

µ 2

2
2 l

2 I N
H los Ntl I



Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
Finally, what is the height (exactly) of the tree in terms of N?

!15
H C

H log Ntl 1

O Clos N



Balanced trees
• Balanced trees by definition have a height of O(log N) 
• A completely filled tree is one example of a balanced tree 
• Other Balanced BSTs include AVL trees, red black trees and so on 
• Visualize operations on an AVL tree: https://visualgo.net/bn/bst



Summary of operations
Operation Sorted Array Binary Search Tree Linked List

Min
Max
Median
Successor
Predecessor
Search
Insert
Delete

Balanced unsorted

Otc Oclogn OLN
04 o ClogN OLN
OCI N
OCI oclosN OCN
l OclogN OCN

olloshDsienaard OceegN OCN
OCN OClogN Ole
OCN oclosW OCD Cifyon know

Print ow OCN www.vwde
to delete






