
HEAPS
Problem Solving with Computers-II

How is PA02 going?
A. Done
B. On track to finish
C. Having some difficulties
D. Just started
E. Haven’t started

Heaps
• Clarification

• heap, the data structure is not related to heap, the region of memory
• Key questions:

• What are the operations supported?
• What are the running times?

Operations
min or Max 04

insert OclogN
delete Cologne

Heaps
 Min-Heaps Max-Heap BST

• Insert :
• Min:
• Delete Min:
• Max
• Delete Max

Applications:
• Efficient sort
• Finding the median of a sequence of numbers
• Compression codes

Choose heap if you are doing repeated insert/delete/(min OR max) operations

Balanced

OTgin 01105N OclosN
OCD 9
OWN Oci OClognt

Occojw Clog

std::priority_queue (STL’s version of heap)
A C++ priority_queue is a generic container, and can store any data type
on which an ordering can be defined: for example ints, structs (Card),
pointers etc.

#include <queue>
priority_queue<int> pq;

Methods:
* push() //insert
* pop() //delete max priority item
* top() //get max priority item
* empty() //returns true if the priority queue is empty

• You can extract object of highest priority in O(log N)
• To determine priority: objects in a priority queue must be comparable to each other

!5

typeofkeys hipsnteritytylmffyh
Leapobject

STL Heap implementation: Priority Queues in C++

!6

priority_queue<int> pq;
pq.push(10);
pq.push(2);
pq.push(80);
cout<<pq.top();
pq.pop();
cout<<pq.top();
pq.pop();
cout<<pq.top();
pq.pop();

A.10 2 80
B.2 10 80
C.80 10 2
D.80 2 10
E. None of the above

What is the output of this code?

go
0

80 10 2

Heaps as binary trees
• Rooted binary tree that is as complete as possible
• In a min-Heap, each node satisfies the following heap property:

 key(x)<= key(children of x)

6

10

40

12

32 4743

Min Heap with 9 nodes

45 41

Where is the minimum element?

I 1

Heaps as binary trees
• Rooted binary tree that is as complete as possible
• In a max-Heap, each node satisfies the following heap property:

 key(x)>= key(children of x)

47

41

12

45

32 4043

Max Heap with 9 nodes

6 10 Where is the maximum element?

Identifying heaps
Starting with the following min-Heap which of the following operations
will result in something that is NOT a min Heap

6

10

40

12

32 4743

45 41

A. Swap the nodes 40 and 32
B. Swap the nodes 32 and 43
C. Swap the nodes 43 and 40
D. Insert 50 as the left child of 45
E. C&D

I
fiolaminhop

MY

violatesthe requirement f y
that the heapshould
be a complete tree

Structure: Complete binary tree
A heap is a complete binary tree: Each level is as full as possible.
Nodes on the bottom level are placed as far left as possible

6

10

40

12

32 4743

45 41

Insert 50 into a heap
• Insert key(x) in the first open slot at the last level of tree (going from left to right)
• If the heap property is not violated - Done
• Else: while(key(parent(x))>key(x)) swap the key(x) with key(parent(x))

12

41

45

47

h
Q

Eto

Insert 50, then 35, then 8
6

10

40

12

32 4743

45 41

I 8
I i iz

I

bubbling Ip
i

Delete min
• Replace the root with the rightmost node at the last level
• “Bubble down”- swap node with one of the children until the heap

property is restored

6

10

40

8

32 4712

45 41 50 35 43

r

14318
143 12

Under the hood of heaps
• An efficient way of implementing heaps is using vectors
• Although we think of heaps as trees, the entire tree can be efficiently

represented as a vector!!

Implementing heaps using an array or vector

6

10

40

12

32 4743

45 41

Value

Index 0 1 2 3 4 5 6 7 8

Using vector as the internal data structure
of the heap has some advantages:

• More space efficient than trees
• Easier to insert nodes into the heap

iTunes
I 2 304 5 6 a 7 8 off

a so

Is

Insert into a heap
• Insert key(x) in the first open slot at the last level of tree (going from left to right)
• If the heap property is not violated - Done
• Else….

Insert the elements {12, 41, 47, 45, 32} in a min-Heap using the vector
representation of the heap

T

l Z

z Is
n

041

6

10

40

12

32 4743

45 41

For a node at index i, index of the parent is
(i-1)/2

Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8

Finding the “parent” of a “node” in the vector representation

T for node of index is
l I i Parent e

I left'childli7 27 1

Rightchildli 22 12

O 50
I 23 4.5 67 8 9

Fadredo A O O I 1 2 23 34

6

10

40

12

32 4743

45 41

Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8

Insert 50, then 35
For a node at index i, index of the parent is
(i-1)/2

q

Insert 8 into a heap

Value 6 10 12 40 32 43 47 45 41 50 35

Index 0 1 2 3 4 5 6 7 8 9 10

After inserting 8, which node is the parent of 8 ?
A. Node 6
B. Node 12
C. None 43
D. None - Node 8 will be the root

D
Il

Delete min
• Replace the root with the rightmost node at the last level
• “Bubble down”- swap node with one of the children until the heap

property is restored

6

10

40

8

32 4712

45 41 50 35 43

Traversing down the tree

6

10

40

12

32 4743

45 41

For a node at index i, what is the index of
the left and right children?

A. (2*i, 2*i+1)
B. (2*i+1, 2*i+2)
C. (log(i), log(i)+1)
D. None of the above

Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8

Next lecture
• More on STL implementation of heaps (priority queues)
• Queues

