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How is PA02 going?
A. Done 
B. On track to finish 
C. Having some difficulties 
D. Just started 
E. Haven’t started 



Heaps 
• Clarification  

•  heap, the data structure is not related to heap, the region of memory 
• Key questions: 

• What are the operations supported? 
• What are the running times?

Operations
min or Max 04

insert OclogN
delete Cologne



Heaps
                                               Min-Heaps              Max-Heap             BST 

• Insert : 
• Min:     
• Delete Min: 
• Max 
• Delete Max 

Applications: 
• Efficient sort 
• Finding the median of a sequence of numbers 
• Compression codes 

Choose heap if you are doing repeated insert/delete/(min OR max) operations 
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std::priority_queue (STL’s version of heap)
A C++ priority_queue is a generic container, and can store any data type 
on which an ordering can be defined: for example ints, structs (Card), 
pointers  etc. 

#include <queue> 
priority_queue<int> pq; 

Methods: 
* push()  //insert
* pop()   //delete max priority item
* top()   //get max priority item
* empty()  //returns true if the priority queue is empty

• You can extract object of highest priority in O(log N) 
• To determine priority: objects in a priority queue must be comparable to each other 
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STL Heap implementation: Priority Queues in C++
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priority_queue<int> pq;
pq.push(10);
pq.push(2);
pq.push(80);
cout<<pq.top();
pq.pop();
cout<<pq.top();
pq.pop();
cout<<pq.top();
pq.pop();

A.10 2 80 
B.2 10 80 
C.80 10 2 
D.80 2 10 
E. None of the above

What is the output of this code? 
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Heaps as binary trees
• Rooted binary tree that is as complete as possible 
• In a min-Heap, each node satisfies the following heap property: 

                   key(x)<= key(children of x)
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Where is the minimum element?
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Heaps as binary trees
• Rooted binary tree that is as complete as possible 
• In a max-Heap, each node satisfies the following heap property: 

                   key(x)>= key(children of x)
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Identifying heaps
Starting with the following min-Heap which of the following operations 
will result in something that is NOT a min Heap
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A. Swap the nodes 40 and 32 
B. Swap the nodes 32 and 43 
C. Swap the nodes 43 and 40 
D. Insert 50 as the left child of 45 
E. C&D
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Structure: Complete binary tree
A heap is a complete binary tree: Each level is as full as possible. 
Nodes on the bottom level are placed as far left as possible
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Insert 50 into a heap
• Insert key(x) in the first open slot at the last level of tree (going from left to right) 
• If the heap property is not violated - Done 
• Else: while(key(parent(x))>key(x)) swap the key(x) with key(parent(x))
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Insert 50, then 35, then 8
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Delete min
• Replace the root with the rightmost node at the last level 
• “Bubble down”- swap node with one of the children until the heap 

property is restored
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Under the hood of heaps
• An efficient way of implementing heaps is using vectors 
• Although we think of heaps as trees, the entire tree can be efficiently 

represented as a vector!!



Implementing heaps using an array or vector
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Value

Index 0 1 2 3 4 5 6 7 8

Using vector as the internal data structure 
of the heap has some advantages: 

• More space efficient than trees 
• Easier to insert nodes into the heap 
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Insert into a heap
• Insert key(x) in the first open slot at the last level of tree (going from left to right) 
• If the heap property is not violated - Done 
• Else….

Insert the elements {12, 41, 47, 45, 32} in a min-Heap using the vector 
representation of the heap
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For a node at index i, index of the parent is  
(i-1)/2

Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8

Finding the “parent” of a “node” in the vector representation

T for node of index is
l I i Parent e

I left'childli7 27 1
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Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8

Insert 50, then 35
For a node at index i, index of the parent is  
(i-1)/2 
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Insert 8 into a heap

Value 6 10 12 40 32 43 47 45 41 50 35

Index 0 1 2 3 4 5 6 7 8 9 10

After inserting 8, which node is the parent of 8 ? 
A. Node 6 
B. Node 12 
C. None 43 
D. None - Node 8 will be the root 
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Delete min
• Replace the root with the rightmost node at the last level 
• “Bubble down”- swap node with one of the children until the heap 

property is restored
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Traversing down the tree 
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For a node at index i, what is the index of 
the left and right children? 

A. (2*i, 2*i+1) 
B. (2*i+1, 2*i+2) 
C. (log(i), log(i)+1) 
D. None of the above

Value 6 10 12 40 32 43 47 45 41

Index 0 1 2 3 4 5 6 7 8



Next lecture
• More on STL implementation of heaps (priority queues) 
• Queues


