LINKED LISTS AND THE RULE OF THREE

Problem Solving with Computers-I| C
tlave you %MPkw\ev\mD a ++ GitHub
1ined Lk b&fd‘(‘e ?

A Yes

- ND

Linked Lists X 8000

The Drawing Of List {1, 2, 3}

Array List

eaddx 0 Haey
Stack Heap elerments arc nexy

(N ™MEM OV [F{y\ea Siwj

head | The overall list is built by connecting the
nodes together by their next pointers. The

nodes are all allocated in the heap. Linked List
C -G D—~C1D
1 A [~
A “head” pointer local to Each node Each node stores The next field of
BuildOneTwoThree() keeps stores one one next pointer. the last node is
the whole list by storing a data element NULL.

pointer to the first node. (int in this

example). What is the key difference between these?

ink

Np. OF ELEMENTS

Nals N

Cpoml{ (:>

dota mext
A

Sleve o
%M

foo?

Dovare Liphoed

?(e\l doka M

ace C 10 Jo

Need bo U fﬂ

ext

14 O

(1. 5L 2,30

)

23|

ot

e

e

Locodeon

m(Ma-'

Les*

x4+

Néct

—EN

pre

\\\1

=

7

head

r=A00

Clogg Linved LSt i

/] Nebee Fuach™s

Pﬁ'\/CJ“C :

Vorables (Dot
m<m\/)€\F
)

= Lmed Ly Jusk, Qe sobn

-
Questions of interest about any data structure:

 What operations does the data structure support?
A linked list supports the following operations:
1. Insert (a value)
2. Delete (a value)
3. Search (for a value)
4. Min
5. Max
6. Print all values
* How do you implement each operation?
 How fast is each operation?

s L A A i
Linked-list as an Abstract Data Type (ADT)

class LinkedList {

public:
LinkedList(); // constructor
~LinkedList(); // destructor
// other methods

private:

// definition of Node
struct Node {
int info;
Node *next;
}i
Node* head; // pointer to first node
Node* tail;

1111 e
RULE OF THREE

If a class defines one (or more) of the following it should probably explicitly
define all three:

1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:

1. What is the behavior of these defaults?

2. What is the desired behavior ?

3. How should we over-ride these methods?

Behavior of default destructor

void test_append 0() {
vector<int> v_exp =
LinkedList 11;
1l.append(1l);
vector<int> v_act =

TESTEQ(v_exp, Vv_act,

}

Assume:

destructor: default

copy constructor: default
copy assignment: default

{1};

ll.vectorize();
“test 0");

What is the output?
A. Compiler error
(@ Memory leak

C. Segmentation fault
D. Test fails

E. None of the above

The destructor code for LinkedList does which of the following?

A. Frees the LinkedList object from the heap
@Frees the Nodes in a LinkedList from the heap
C. BothAand B

D. None of the above

N

e
Behavior of default copy constructor

void test copy constructor() {
LinkedList 11;
11.append(1);
1l1l.append(2);
LinkedList 12(11);
TESTEQ(1ll, 12, "test copy constructor”);

' What is the output?
Assume: A. Compiler error
destructor: overloaded £l LAY [EELS
copy constructor: default (@Segmgntanon fault
copy assignment: default Dk VoSl

E. None of the above

E,,MH46Z6U6AZSWWH
Behavior of default copy assignment

void test copy assignment() {
LinkedList 11;
ll.append(1);
ll.append(2);
LinkedList 12;
12 = 11;
TESTEQ(ll, 12, "test copy assignment”);

} What is the output?
Assume: A. Compiler error
destructor: overloaded 25 Lemey el
copy constructor: overloaded © Segme.ntanon fault
copy assignment: default 2 ISl

E. None of the above

e
Write another test case for the copy assignment

void test copy assignment 2(){
// Write another test case for the copy assignment operator

e cots foon Fechn

Behavior of default copy assignment

Assume that your implementation of LinkedList uses the overloaded
destructor, default: copy constructor, copy assignment

1:1->2->5->null
void test default assignment 2(LinkedList& 11)({
// Use the copy assignment
LinkedList 12;
12.append(10);
12.append(20);
12 = 11;
}
* What is the default behavior?

Next time

* Linked Lists counted
- Operator overloading
+ Unit testing

- GDB

