LINKED LISTS (CONTD)
RULE OF THREE
MEMORY ERRORS
OPERATOR OVERLOADING

Problem Solving with Computers-|| C++
GitHub

O 0
J |

@
osind ©



Memory Errors

 Memory Leak: Program does not free memory allocated on the heap.

« Segmentation Fault: Code tries to access an invalid memory location



S A B
RULE OF THREE

If a class overload one (or more) of the following methods, it should overload all
three methods:

1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:

1. What is the behavior of these defaults?

2. What is the desired behavior ?

3. How should we over-ride these methods?



Behavior of default destructor

void test append 0(){

string testname= “Append 10 to empty list”;

vector<int> v = {10};
LinkedList 11;
11.append(10);
TESTEQ(1ll, v, testname);

}

Assume:

destructor: default

copy constructor: default
copy assignment: default

What is the output?
A. Compiler error

B. Memory leak

C. Segmentation fault
D. Test fails

E. None of the above




Why do we need to write a destructor for LinkedList?

A. To free LinkedList objects

B. To free Nodes in a LinkedList
C. BothAand B

D. None of the above




L
Behavior of default copy constructor

volid test copy constructor () {
string testname = "test copy constructor”;
LinkedList 11;
ll.append(1l);
l1l.append(2);
LinkedList 12(11);
TESTEQ(ll, 12, testname);

What is the output?

}Assume: A. Compiler error
destructor: overloaded B. Memory leak

C. Segmentation fault
D. Test fails
E. None of the above

copy constructor: default
copy assignment: default




L
Behavior of default copy assignment

void test copy assignment 0(){
string testname = "test copy assignment: case 0”;
LinkedList 11;
ll.append(1);
ll.append(2);
LinkedList 12;

12 = 11; What is the output?
TESTEQ(l1ll, 12,); A. Compiler error
} B. Memory leak
Assume: C. Segmentation fault
destructor: overloaded D. Test fails
copy constructor: overloaded E. None of the above

copy assignment: default



L
Write another test case for the copy assignment

vold test copy assignment 2(){



Overloading Binary Comparison Operators

We would like to be able to compare two objects of the class using the
following operators

and possibly others



L
Overloading Binary Comparison Operators

We would like to be able to compare two objects of the class using the
following operators

and possibly others

void TESTEQ(const LinkedList & Ist1, const LinkedList &Ist2, string test){
cout<<test<<endl;

if(Ist1.isEqual(lst2))

cout<<“ PASSED”<<endl;
else

cout<<“ FAILED”<<endl;



Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows

LinkedList 11, 12;
//append nodes to 11 and 12;

LinkedList 13 = 11 + 12 ;



Overloading input/output stream

Wouldn’t it be convenient if we could do this:

LinkedList list;
cout<<list; //prints all the elements of list



Next time

- Recursion + PAQO1



