
 
LINKED LISTS (CONTD)
 RULE OF THREE
 MEMORY ERRORS
 OPERATOR OVERLOADING

Problem Solving with Computers-II

Memory Errors
• Memory Leak: Program does not free memory allocated on the heap.

• Segmentation Fault: Code tries to access an invalid memory location

e g void fool 9
Node p a new int

P is removed from
the stack

but the object teePgoints
to is never

Node rap 0

cont CC p data Kemal
P

11 dereferencing a null pointer

RULE OF THREE
If a class overload one (or more) of the following methods, it should overload all
three methods:
1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:
1. What is the behavior of these defaults?
2. What is the desired behavior ?
3. How should we over-ride these methods?

void test_append_0(){
 string testname= “Append 10 to empty list”;

 vector<int> v = {10};
LinkedList ll;
ll.append(10);
TESTEQ(ll, v, testname);

}

Assume:
destructor: default
copy constructor: default
copy assignment: default

What is the output?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. Test fails
E. None of the above

Behavior of default destructor DO

E.de I

O O

A. To free LinkedList objects
B. To free Nodes in a LinkedList
C. Both A and B
D. None of the above

Why do we need to write a destructor for LinkedList?

0
Heap

int p new int
P XD

delete p I

delete pi Seg
Deleting heap memory that has already

been
freed resulkfgnfane

Behavior of default copy constructor
void test_copy_constructor(){
 string testname = "test copy constructor”;

LinkedList l1;
l1.append(1);
l1.append(2);
LinkedList l2(l1);
TESTEQ(l1, l2, testname);

}
Assume:
destructor: overloaded
copy constructor: default
copy assignment: default

What is the output?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. Test fails
E. None of the above

f egf

et t.TO
goner e I T

Of O

Behavior of default copy assignment
void test_copy_assignment_0(){
 string testname = "test copy assignment: case 0”;

LinkedList l1;
l1.append(1);
l1.append(2);
LinkedList l2;
l2 = l1;
TESTEQ(l1, l2,);

}

What is the output?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. Test fails
E. None of the above

Assume:
destructor: overloaded
copy constructor: overloaded
copy assignment: default

et

F DI
l2op Cei

Irias
This line calls the Pyaaissimmooneynt

Write another test case for the copy assignment
void test_copy_assignment_2(){

}

S A

Linked list lol
li append co Dl
ll append 207 z

live.eduEno
ez all l

If we used the same
code as the copy constructor

in our implementation often copy
assignment

we would have a Mcinerny

Overloading Binary Comparison Operators
We would like to be able to compare two objects of the class using the
following operators
==
!=
and possibly others

Overloading Binary Comparison Operators

void TESTEQ(const LinkedList & lst1, const LinkedList &lst2, string test){
cout<<test<<endl;

 if(lst1.isEqual(lst2))
 cout<<“ PASSED”<<endl;
else
 cout<<“ FAILED”<<endl;

}

We would like to be able to compare two objects of the class using the
following operators
==
!=
and possibly others

Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows

LinkedList l1, l2;

//append nodes to l1 and l2;

LinkedList l3 = l1 + l2 ;

Overloading input/output stream
Wouldn’t it be convenient if we could do this:

LinkedList list;
cout<<list; //prints all the elements of list

Next time
• Recursion + PA01

