
INTRO TO PA01
OPERATOR OVERLOADING
RECURSION
GDB

Problem Solving with Computers-II

Announcements
• PA01 released, due in one week
• Midterm next week (Thurs)(08/29) - All topics covered until Tuesday of next

week (Linked Lists and BST).
 For more details visit https://ucsb-cs24.github.io/m19/exam/e01/

https://ucsb-cs24.github.io/m19/exam/e01/

PA01: Card matching game with linked lists
!3

Alice:

Bob:

Review PA01: Card matching game with linked lists
!4

Overloading Binary Comparison Operators

Last class: overloaded == for LinkedList

We would like to be able to compare two objects of the class using the
following operators
==
!=
and possibly others

Overloading input/output stream
Wouldn’t it be convenient if we could do this:

LinkedList list;
cout<<list; //prints all the elements of list

Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows

LinkedList l1, l2;

//append nodes to l1 and l2;

LinkedList l3 = l1 + l2 ;

Recursion

Zooming into a Koch’s snowflake

Sierpinski triangle

Describe a linked-list recursively

Common methods of linked list that can be implemented using
recursion

• Sum all the values
• Print all the values
• Search for a value
• Delete all the nodes in a linked list

4050 2010

head

int IntList::sum(){

 //Return the sum of all elements in a linked list
}

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion
• Usually the helper function is private
For example

Int IntList::sum(){

return sum(head);
 //helper function that performs the recursion.

}

4050 2010

head

int IntList::sum(Node* p){

}

4050 2010

head

bool IntList::clear(Node* p){

}

Concept Question

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list
(E): A and D

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 class Node {
 public:
 int info;
 Node *next;
 };

Concept question

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B
(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 Node::~Node(){
 delete next;

 }

LinkedList::~LinkedList(){
delete head;

}

 Node::~Node(){
 delete next;

 }

head tail

GDB: GNU Debugger
 - To use gdb, compile with the -g flag
 - Setting breakpoints (b)
 - Running programs that take arguments within gdb (r arguments)
 - Continue execution until breakpoint is reached (c)
 - Stepping into functions with step (s)
 - Stepping over functions with next (n)
 - Re-running a program (r)
 - Examining local variables (info locals)
 - Printing the value of variables with print (p)
 - Quitting gdb (q)
 - Debugging segfaults with backtrace (bt)
* Refer to the gdb cheat sheet: https://ucsb-cs24.github.io/m19/lectures/GDB-cheatsheet.pdf

https://ucsb-cs24.github.io/m19/lectures/GDB-cheatsheet.pdf

Next time
• Binary Search Trees

