
RECURSION
GDB
BINARY SEARCH TREES

Problem Solving with Computers-II

Concept Question

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list
(E): A and D

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 class Node {
 public:
 int info;
 Node *next;
 };

Concept question

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B
(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 Node::~Node(){
 delete next;

 }

LinkedList::~LinkedList(){
delete head;

}

 Node::~Node(){
 delete next;

 }

head tail

Binary Search
• Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.

• Invariant. Algorithm maintains a[lo] ≤ value ≤ a[hi].

• Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

GDB: GNU Debugger
 - To use gdb, compile with the -g flag
 - Setting breakpoints (b)
 - Running programs that take arguments within gdb (r arguments)
 - Continue execution until breakpoint is reached (c)
 - Stepping into functions with step (s)
 - Stepping over functions with next (n)
 - Re-running a program (r)
 - Examining local variables (info locals)
 - Printing the value of variables with print (p)
 - Quitting gdb (q)
 - Debugging segfaults with backtrace (bt)
* Refer to the gdb cheat sheet: https://ucsb-cs24.github.io/m19/lectures/GDB-cheatsheet.pdf

Demo debugging using gdb.

https://ucsb-cs24.github.io/m19/lectures/GDB-cheatsheet.pdf

Trees

!7

 A tree has following general properties:
 • One node is distinguished as a root;
 • Every node (exclude a root) is connected

by a directed edge from exactly one other
node;

 A direction is: parent -> children
• Leaf node: Node that has no children

Which of the following is/are a tree?

A. B.

C.

D. A & B

E. All of A-C

!8

Binary Search Trees
• What are the operations supported?

• What are the running times of these operations?

• How do you implement the BST i.e. operations supported by it?

!9

Binary Search Tree – What is it?

42

32

12

45

41 50

!10

Do the keys have to be integers?

• Each node:
• stores a key (k)
• has a pointer to left child, right child

and parent (optional)
• Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree <= Node’s key
Node’s key < Keys in node’s right subtree

Which of the following is/are a binary search tree?

42

32

12

42

3212

42

3212 65

30 38

A. B.

42

32

12

56

45

D.

C.

E. More than one of these

BSTs allow efficient search!

42

32

12

45

41 50

!12

• Start at the root;
• Trace down a path by comparing k with the key of the

current node x:
• If the keys are equal: we have found the key

• If k < key[x] search in the left subtree of x

• If k > key[x] search in the right subtree of x

Search for 41, then search for 53

class BSTNode {

public:
 BSTNode* left;
 BSTNode* right;
 BSTNode* parent;
 int const data;

 BSTNode(const int & d) : data(d) {
 left = right = parent = 0;
 }
};

!13

A node in a BST

Define the BST ADT

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements in order

42

32

12

45

41 50

