RECURSION
GDB
BINARY SEARCH TREES

Problem Solving with Computers-I| C++

Concept Question class Node {

. e . public:
LinkedList::~LinkedList()A{ int info:
delete head; Node *next:
; i
Which of the following objects are deleted when the destructor of Linked-list is called?
head tail

T~ 20

(B): only the first node

(C):Aand B
(D): All the nodes of the linked list
(E): Aand D

Concept question

LinkedList::~LinkedList(){ Node: :~Node(){
delete head; delete next:

} ¥

Which of the following objects are deleted when the destructor of Linked-list is called?

head tall

(/-\)\\)Clg_>2 3/)

(B): All the nodes In the linked-list

(C):Aand B

(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){ Node: :~Node(){
delete head: delete next:

¥ ¥
head tall

T~ DD~

L
Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[lo] =value = al[hi].

- Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo hi

L
GDB: GNU Debugger

- To use gdb, compile with the -g flag

- Setting breakpoints (b)

- Running programs that take arguments within gdb (r arguments)
- Continue execution until breakpoint is reached (c)

- Stepping into functions with step (s)

- Stepping over functions with next (n)

- Re-running a program (r)

- Examining local variables (info locals)

- Printing the value of variables with print (p)

- Quitting gdb (q) Demo debugging using gdb.
- Debugging segfaults with backtrace (bt)

* Refer to the gdb cheat sheet: https://ucsb-cs24.github.io/m19/lectures/GDB-cheatsheet.pdf

https://ucsb-cs24.github.io/m19/lectures/GDB-cheatsheet.pdf

A tree has following general properties:

e One node 1s distinguished as a root;

* Every node (exclude a root) is connected
by a directed edge from exactly one other
node;

A direction 1s: parent -> children
» Leaf node: Node that has no children

Which of the following is/are a tree?

A @

B.

D.A&B

E. All of A-C

Binary Search Trees

- What are the operations supported?
- What are the running times of these operations?

- How do you implement the BST i.e. operations supported by it?

e B
Binary Search Tree — What is it?

« Each node:
e « stores a key (k)
* has a pointer to left child, right child
@ @ and parent (optional)

@ « Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree <= Node’s key
Node’s key < Keys in node’s right subtree

Do the keys have to be integers?

Which of the following is/are a binary search tree?

¢

E. More than one of these

. S
BSTs allow efficient search!

Start at the root;

e + Trace down a path by comparing k with the key of the
current node x:

a e - If the keys are equal: we have found the key

- If k <key[x] search in the left subtree of x

0 0 @ « If k> key[x] search in the right subtree of x

@ Search for 41, then search for 53
dise=<lb

. S
Anode in a BST

class BSTNode {

public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;

BSTNode(const int & d) : data(d) {
left = right = parent = 0;
}
}s

Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

