
 
RUNNING TIME ANALYSIS
Problem Solving with Computers-II

 



Performance questions
!2

• How efficient is a particular algorithm? 
• CPU time usage   (Running time complexity) 
• Memory usage 
• Disk usage 
• Network usage 

  
• Why does this matter? 

• Computers are getting faster, so is this really important? 
• Data sets are getting larger – does this impact running times?



How can we measure time efficiency of algorithms?

• One way is to measure the absolute running time  

• Pros? Cons?

clock_t t; 
t = clock(); 

//Code under test  

t = clock() - t;Drawback
Doesn't say much

about the efficiency of
any algorithm

Depends on the hardware



Which implementation is significantly faster ?

function F(n){ 
    if(n == 1) return 1 
    if(n == 2) return 1 
return F(n-1) + F(n-2) 
}

A.
function F(n){ 
 Create an array fib[1..n] 
 fib[1] = 1 
 fib[2] = 1 
 for i = 3 to n: 
    fib[i] = fib[i-1] + fib[i-2] 
 return fib[n] 
}

B. 

C. Both are almost equally fast



A better question: How does the running time grow as a function of 
input size

function F(n){ 
    if(n == 1) return 1 
    if(n == 2) return 1 
return F(n-1) + F(n-2) 
}

function F(n){ 
 Create an array fib[1..n] 
 fib[1] = 1 
 fib[2] = 1 
 for i = 3 to n: 
    fib[i] = fib[i-1] + fib[i-2] 
 return fib[n] 
}

The “right” question is: How does the running time grow? 
E.g. How long does it take to compute F(200)? 
….let’s say on….



NEC Earth Simulator

Can perform up to 40 trillion operations per second.



The running time of the recursive implementation
The Earth simulator needs 292 seconds for F200. 

Time in seconds  Interpretation 
 210      17 minutes 

 220    12 days 

 230    32 years 

 240    cave paintings 

  270    The big bang! 

function F(n){ 
    if(n == 1) return 1 
    if(n == 2) return 1 
return F(n-1) + F(n-2) 
}

Let’s try calculating F200 
using the iterative 
algorithm on my laptop…..



Goals for measuring time efficiency
• Focus on the impact of the algorithm:  
Simplify the analysis of running time by ignoring “details” which may 
be an artifact of the underlying implementation: 

• E.g., 1000001 ≈ 1000000 

• Similarly, 3n2 ≈ n2 

• Focus on trends as input size increases (asymptotic behavior):  
How does the running time of an algorithm increases with the size of 
the input in the limit (for large input sizes)



Counting steps (instead of absolute time)
• Every computer can do some primitive operations in constant time: 

• Data movement (assignment) 

• Control statements (branch, function call, return) 

• Arithmetic and logical operations 

• By inspecting the pseudo-code, we can count the number of primitive 
operations executed by an algorithm



Running Time Complexity

/* N is the length of the array*/ 
int sumArray(int arr[], int N) 
{   
       int result=0;   
       for(int i=0; i < N; i++)     
              result+=arr[i];   
       return result; 
}

Start by counting the primitive operations

sleep
SHI SH

god
and

2steps assign
2stepsCadd assign

few l t I i 5 N I 2 1 5N



Big-O notation

N Steps = 5*N +3
1 8
10 53
1000 5003
100000 500003
10000000 50000003

• Simplification 1: Count steps instead of absolute 
time 

• Simplification 2: Ignore lower order terms 
• Does the constant 3 matter as N gets large?  

• Simplification 3: Ignore constant coefficients in 
the leading term (5*N) simplified to N 

After the simplifications,  

The number of steps grows linearly in N 
Running Time = O(N) pronounced “Big-Oh of N”



Backof theenvelop
calculate

gives worse
case 0CIN



Orders of growth
• We are interested in how 

algorithm running time scales 
with input size 

• Big-Oh notation allows us to 
express that by ignoring the 
details 

• 20n hours v. n2 microseconds:  
• which has a higher order of 

growth? 

• Which one is better?

i

n Z

20n forlarge n



Big-O notation lets us focus on the big picture
Recall our goals: 
• Focus on the impact of the algorithm 

• Focus on asymptotic behavior (running time as N gets large) 

Count the number of steps in your algorithm: 3+ 5*N 
Drop the constant additive term         : 5*N 
Drop the constant multiplicative term : N 
Running time grows linearly with the input size 
Express the count using O-notation 
Time complexity =  O(N)     



Given the step counts for different algorithms, express the 
running time complexity using Big-O

1. 10000000  
2. 3*N      
3. 6*N-2      
4. 15*N + 44 
5. 50*N*logN 
6. N2     
7. N2-6N+9   
8. 3N2+4*log(N)+1000

For polynomials, use only leading term, ignore coefficients: linear, quadratic

C l constant time

0 8 3
O O CN loSN

f OCN's

Tiny



Common sense rules of Big-O
1. Multiplicative constants can be omitted: 14n2 becomes n2 .  

2. na dominates nb if a > b: for instance, n2 dominates n.  

3. Any exponential dominates any polynomial: 3n dominates n5 (it even 
dominates 2n ).

5
polynomial N 3N exponential



What is the Big O of sumArray2

/* N is the length of the array*/ 
int sumArray2(int arr[], int N) 
{   
       int result=0;   
       for(int i=0; i < N; i=i+2)     
              result+=arr[i];   
       return result; 
}

A. O(N2) 

B. O(N) 
C. O(N/2) 
D. O(log N) 

E. None of the array

0 Oci

I D

OCI OCD t E My
2



What is the Big O of sumArray2
/* N is the length of the array*/ 
int sumArray2(int arr[], int N) 
{   
       int result=0;   
       for(int i=1; i < N; i=i*2)     
              result+=arr[i];   
       return result; 
}

A. O(N2) 

B. O(N) 
C. O(N/2) 
D. O(log N) 

E. None of the arrayO

loop repeals flosNI
times



Operations on sorted arrays

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

• Min :  
• Max:  
• Median:  
• Successor:  
• Predecessor:  
• Search: 
• Insert :  
• Delete:



How is PA01 going?
A. Done 
B. On track to finish 
C. Having trouble designing my classes 
D. Stuck and struggling 
E. Haven’t started 

• PA02 deadline this Thursday (04/18)at midnight



Next time
• Running time analysis of Binary Search Trees

References:  
https://cseweb.ucsd.edu/classes/wi10/cse91/resources/algorithms.ppt 
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf 


