
 
RUNNING TIME ANALYSIS
Problem Solving with Computers-II

Performance questions
!2

• How efficient is a particular algorithm?
• CPU time usage (Running time complexity)
• Memory usage
• Disk usage
• Network usage

• Why does this matter?

• Computers are getting faster, so is this really important?
• Data sets are getting larger – does this impact running times?

How can we measure time efficiency of algorithms?

• One way is to measure the absolute running time

• Pros? Cons?

clock_t t;
t = clock();

//Code under test

t = clock() - t;

include time

numberto
ofyourcompclock

Cong Time to run the also Algorithm
for a specific input 1inputsize
Doesn't tell us

how the

running time scales
with absolute time

the input size of running my
Tied to the performance of

hardware
code under test

Wait for the program to
complete ticks fococksPEI

SEC

Which implementation is significantly faster ?

function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

A.
function F(n){
 Create an array fib[1..n]
 fib[1] = 1
 fib[2] = 1
 for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
 return fib[n]
}

B.

C. Both are almost equally fast

so

the

ICn o t fCn27Fibonaccifin E E I E 8 n

A better question: How does the running time grow as a function of
input size

function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

function F(n){
 Create an array fib[1..n]
 fib[1] = 1
 fib[2] = 1
 for i = 3 to n:
 fib[i] = fib[i-1] + fib[i-2]
 return fib[n]
}

The “right” question is: How does the running time grow?
E.g. How long does it take to compute F(200)?
….let’s say on….

NEC Earth Simulator

Can perform up to 40 trillion operations per second.

The running time of the recursive implementation
The Earth simulator needs 292 seconds for F200.

Time in seconds Interpretation
 210 17 minutes

 220 12 days

 230 32 years

 240 cave paintings

 270 The big bang!

function F(n){
 if(n == 1) return 1
 if(n == 2) return 1
return F(n-1) + F(n-2)
}

Let’s try calculating F200
using the iterative
algorithm on my laptop…..

Goals for measuring time efficiency
• Focus on the impact of the algorithm:
Simplify the analysis of running time by ignoring “details” which may
be an artifact of the underlying implementation:

• E.g., 1000001 ≈ 1000000

• Similarly, 3n2 ≈ n2

• Focus on trends as input size increases (asymptotic behavior):
How does the running time of an algorithm increases with the size of
the input in the limit (for large input sizes)r

Counting steps (instead of absolute time)
• Every computer can do some primitive operations in constant time:

• Data movement (assignment)

• Control statements (branch, function call, return)

• Arithmetic and logical operations

• By inspecting the pseudo-code, we can count the number of primitive
operations executed by an algorithm

k 5

This is the first step fordoing an analysis called Big oh

Running Time Complexity

/* N is the length of the array*/
int sumArray(int arr[], int N)
{
 int result=0;
 for(int i=0; i < N; i++)
 result+=arr[i];
 return result;
}

Start by counting the primitive operations

Statement ofsteps
intreault0 z
at i20 1
ien 1
it 1 2

resuettearsci7 3
return 1

Loop runs Ntimes
Totalnoofsteps

HI 1N 1 2 3 t

316N

Big-O notation

N Steps = 5*N +3
1 8
10 53
1000 5003
100000 500003
10000000 50000003

• Simplification 1: Count steps instead of absolute
time

• Simplification 2: Ignore lower order terms
• Does the constant 3 matter as N gets large?

• Simplification 3: Ignore constant coefficients in
the leading term (5*N) simplified to N

After the simplifications,

The number of steps grows linearly in N
Running Time = O(N) pronounced “Big-Oh of N”

ofsteps 20 695N
Runningtime OCT exponential

1 oflevelsontheright
most

nffeadeluilder Braude a 42

of
levels

onthe
leftmost

brane

analysis

µ 2

4

of function calls at bevel k z za Total A offunction calls isbelwa2ad.iq

Orders of growth
• We are interested in how

algorithm running time scales
with input size

• Big-Oh notation allows us to
express that by ignoring the
details

• 20n hours v. n2 microseconds:
• which has a higher order of

growth?

• Which one is better?

O
exponential
recursivef b

g rgw

n Input sin

Big-O notation lets us focus on the big picture
Recall our goals:
• Focus on the impact of the algorithm

• Focus on asymptotic behavior (running time as N gets large)

Count the number of steps in your algorithm: 3+ 5*N
Drop the constant additive term : 5*N
Drop the constant multiplicative term : N
Running time grows linearly with the input size
Express the count using O-notation
Time complexity = O(N)

n apu s

Given the step counts for different algorithms, express the
running time complexity using Big-O

1. 10000000
2. 3*N
3. 6*N-2
4. 15*N + 44
5. 50*N*logN
6. N2
7. N2-6N+9
8. 3N2+4*log(N)+1000

For polynomials, use only leading term, ignore coefficients: linear, quadratic

Number ofsteps c y
OCN
0cm
CN
O N logN
CNY
OCNY

our
z t not NlogN 0127

Common sense rules of Big-O
1. Multiplicative constants can be omitted: 14n2 becomes n2 .

2. na dominates nb if a > b: for instance, n2 dominates n.

3. Any exponential dominates any polynomial: 3n dominates n5 (it even
dominates 2n).

What is the Big O of sumArray2

/* N is the length of the array*/
int sumArray2(int arr[], int N)
{
 int result=0;
 for(int i=0; i < N; i=i+2)
 result+=arr[i];
 return result;
}

A. O(N2)

B. O(N)
C. O(N/2)
D. O(log N)

E. None of the array

O
574

Hee
C t ca t I

2

What is the Big O of sumArray2
/* N is the length of the array*/
int sumArray2(int arr[], int N)
{
 int result=0;
 for(int i=1; i < N; i=i*2)
 result+=arr[i];
 return result;
}

A. O(N2)

B. O(N)
C. O(N/2)
D. O(log N)

E. None of the array

a

0 I
CZ

Total numberof steps Ci t Cz s ofiterationsofloop

The important step here is to get the humberoftimes

the loop runs as a function of N

To do that we can get a relationship between

the iteration number k and the loopvariable i

Iteration number I
1

I
2

2 In general at
4 iteration k

3 k e
8 in 2

4
ht

K 2

The forLoop stops
when 2 is greaterthan

or

equal to N

2 N

solve for k

k log N I

Told Mo g sleeps 4 Cz Clog Ntl

Apply the subs of Big O

OC

Operations on sorted arrays

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

• Min :
• Max:
• Median:
• Successor:
• Predecessor:
• Search:
• Insert :
• Delete:

k logan el

How is PA01 going?
A. Done
B. On track to finish
C. Having trouble designing my classes
D. Stuck and struggling
E. Haven’t started

• PA02 deadline this Thursday (04/18)at midnight

Next time
• Running time analysis of Binary Search Trees

References:
https://cseweb.ucsd.edu/classes/wi10/cse91/resources/algorithms.ppt
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

