RUNNING TIME ANALYSIS

Problem Solving with Computers-II

C++

include ciostrestace std
using
int main) cout<<"Hol

GitHub

景
Performance questions

-How efficient is a particular algorithm?

- CPU time usage (Running time complexity)
- Memory usage
- Disk usage
- Network usage
-Why does this matter?
- Computers are getting faster, so is this really important?
- Data sets are getting larger - does this impact running times?

How can we measure time efficiency of algorithms?
\#include time>

- One way is to measure the absolute running time
- Pros? Cons?

Con time to run the algo for a specific input linput size clock_t t; $\mathrm{t}=\mathrm{c}$ lock () ; number hicks of your compute
S/Code under test clock Algorithm $\mathrm{t}=\mathrm{clock}()-\mathrm{t}$; Doesn't tel us how the running time scales with the input size

* Tied to the performance of hardware of running my code under test
* Wail for the program te complete (ticlis)/clocks.PES

Which implementation is significantly faster?

A.

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
    return F(n-1) + F(n-2)
    }
```

B.

```
function F(n) {
    Create an array fib[1..n]
    fib[1] = 1
    fib[2] = 1
    for i = 3 to n:
        fib[i] = fib[i-1] + fib[i-2]
    return fib[n]
}
```

C. Both are almost equally fast
Fibonaccif(n): 1
23
5
8 $n: 123456 \ldots n$ $F(n-1)+F(n-2)$

A better question: How does the running time grow as a function of input size

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

```
function F(n) {
    Create an array fib[1..n]
    fib[1] = 1
    fib[2] = 1
    for i = 3 to n:
        fib[i] = fib[i-1] + fib[i-2]
    return fib[n]
}
```

The "right" question is: How does the running time grow?
E.g. How long does it take to compute $F(200)$?
....let's say on....

NEC Earth Simulator

Can perform up to 40 trillion operations per second.

The running time of the recursive implementation

The Earth simulator needs $2{ }^{92}$ seconds for F_{200}.

Time in seconds
210
220
230
240

270

Interpretation
17 minutes
12 days
32 years
cave paintings

The big bang!

```
function F(n) {
    if(n == 1) return 1
    if(n == 2) return 1
return F(n-1) + F(n-2)
}
```

Let's try calculating F_{200} using the iterative algorithm on my laptop.....

Goals for measuring time efficiency

- Focus on the impact of the algorithm:

Simplify the analysis of running time by ignoring "details" which may be an artifact of the underlying implementation:

- E.g., $1000001 \approx 1000000$
- Similarly, $3 n^{2} \approx n^{2}$
- Focus on trends as input size increases (asymptotic behavior): How does the running time of an algorithm increases with the size of the input in the limit (for large input sizes)

Counting steps (instead of absolute time)

- Every computer can do some primitive operations in constant time:
- Data movement (assignment) $\quad x=5$
- Control statements (branch, function call, return)
- Arithmetic and logical operations
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm

This is the first step for doing an analyn's called Big-oh

Running Time Complexity

Start by counting the primitive operations
/* N is the length of the array*/
statement \# of steps
int sumArray(int arr[], int N)
int seoul $=0$ 1
int $i=0$ 1
int result =0;
for (int $i=0 ; i<N ; i++)$ result+=arr[i];
return result;
\}
i<N 1
it 2
result $=\operatorname{ass}[i] 3$
Loop runs: N times
Total no. of steps
$=1+1+N *(1+2+3)+1$
$=3+6 \mathrm{~N}$

Big-O notation

N	Steps $=5^{*} N+3$
1	8
10	53
1000	5003
100000	500003
10000000	50000003

- Simplification 1: Count steps instead of absolute time
- Simplification 2: Ignore lower order terms
- Does the constant 3 matter as N gets large?
- Simplification 3: Ignore constant coefficients in the leading term $\left(5^{*} \mathrm{~N}\right)$ simplified to N

After the simplifications,
The number of steps grows linearly in N Running Time $=\mathbf{O}(\mathbf{N})$ pronounced "Big-Oh of N"

What takes so long? Let's unravel the recursion.
 \# of function calls at bevel $k=2^{6}$. Total it of function calls is deter $2^{2 v a}$ a 22^{2} The same subproblems get solved over and over again! $O\left(2^{n}\right)$

Orders of growth

- We are interested in how algorithm running time scales with input size
- Big-Oh notation allows us to express that by ignoring the details
- 20n hours v. n^{2} microseconds:
- which has a higher order of growth?
- Which one is better?

Big-O notation lets us focus on the big picture

Recall our goals:

- Focus on the impact of the algorithm
- Focus on asymptotic behavior (running time as \mathbf{N} gets large)

Count the number of steps in your algorithm: $3+5 * N$ Drop the constant additive term : 5*N
Drop the constant multiplicative term : N
Running time grows linearly with the input size
Express the count using \mathbf{O}-notation
Time complexity $=\mathrm{O}(\mathrm{N})$

Given the step counts for different algorithms, express the running time complexity using Big-O

Number of sips

1. 10000000

O(1)
2. $3 * \mathrm{~N}$
$O(N)$
3. $6 * N-2$
$O(N)$
4. $15 * N+44$
$O(N)$
5. $50 * N * \log N$
$O(N \log N)$
6. N^{2}
$O\left(N^{2}\right)$
7. $\mathrm{N}^{2}-6 \mathrm{~N}+9$
$O\left(N^{2}\right)$
8. $3 N^{2}+4 * \log (N)+1000 \quad O\left(N^{2}\right)$
$2^{N}+N^{20}+N \log N \quad O\left(2^{N}\right)$
For polynomials, use only leading term, ignore coefficients: linear, quadratic

Common sense rules of Big-O

1. Multiplicative constants can be omitted: $14 n^{2}$ becomes n^{2}.
2. n^{a} dominates n^{b} if $\mathrm{a}>\mathrm{b}$: for instance, n^{2} dominates n .
3. Any exponential dominates any polynomial: 3^{n} dominates n^{5} (it even dominates 2^{n}).

What is the Big O of sumArray2

A. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{N} / 2)$
D. $\mathrm{O}(\log \mathrm{N})$
E. None of the array
/* N is the length of the array*/ int sumArray2(int arr[], int N) \{

What is the Big O of sumArray2
/* N is the length of the array*/
A. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{N} / 2)$
(D.) $\mathrm{O}(\log \mathrm{N})$
E. None of the array int sumArray2(int arr[], int N) \{

$$
\text { int result }=0 ; \Rightarrow C_{1}
$$

for (int $i=1 ; i<N ; i=i * 2)$
result+=arr[i];
return result; C_{2}
Total number of steps $=C_{1}+C_{2} *$ H of iterations $8100 p$ The important step here is to get the number of times the loop runs as a function of N

To do that we can get a relation ship between the iteration number k and the loop variable i Iteration number

number	i
1	1
2	2
3	4
4	8
\vdots	2^{k-1}

In gravel at ituation k $i=2^{k-1}$

The for loop stops when i is greater than or equal to N

$$
2^{k-1}>=N
$$

Solve for k

$$
k>\log N+1
$$

$$
\text { Total no. \& steps }=c_{1}+c_{2} *(\log N+1)
$$

Apply the tubes of Big. O

$$
O(\log N)
$$

Operations on sorted arrays

- Min :
- Max:
- Median:
- Successor:
- Predecessor:
- Search:
- Insert :
- Delete:

6	13	14	25	33	43	51	53	64	72	84	93	95	96	97
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1														
lo														hi

How is PA01 going?

A. Done
B. On track to finish
C. Having trouble designing my classes
D. Stuck and struggling
E. Haven't started

- PA02 deadline this Thursday (04/18)at midnight

Next time

- Running time analysis of Binary Search Trees

References:
https://cseweb.ucsd.edu/classes/wi10/cse91/resources/algorithms.ppt http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

