
RUNNING TIME ANALYSIS - PART 2
BINARY SEARCH TREES

Problem Solving with Computers-II

How is PA01 going?
A. Done!
B. On track to finish
C. On track to finish but my code is a mess
D. Stuck and struggling
E. Haven’t started

Midterm – Wednesday 5/15
• Cumulative but the focus will be on

• BST
• Running time analysis

Big O: What does it really mean?

A more precise definition of Big-O
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant
c > 0 and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g)
means that “f grows no faster than g”

What is the Big-O running time of algoX?
• Assume dataA is some data structure that supports the following operations

with the given running times, where N is the number of keys stored in the
data structure:

• insert: O(log N)
• min: O(1)
• delete: O(log N)

void algoX(int arr[], int N)
{
 dataA ds;//ds contains no keys
 for(int i=0; i < N; i=i++)
 ds.insert(arr[i]);
 for(int i=0; i < N; i=i++)
 arr[i] = ds.min();
 ds.delete(arr[i]);
}

A. O(N2)
B. O(N logN)
C. O(N)
D. O(log N)
E. Not enough information to

compute

Big-Omega
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Ω(g) if there are constants
c > 0, k>0 such that c · g(n) ≤ f(n)
for n >= k

f = Ω(g)
means that “f grows at least as fast as g”

Big-Theta
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Θ(g) if there are constants
c1, c2 , k such that 0 ≤ c1g(n) ≤ f(n) ≤
c2g(n), for n >=k

Running time

Problem Size (n)

Best case, worst case, average case running times

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

Operations on sorted arrays
• Min :
• Max:
• Median:
• Successor:
• Predecessor:
• Search:
• Insert :
• Delete:

Worst case analysis of binary search
!10

bool binarySearch(int arr[], int element, int N){
//Precondition: input array arr is sorted in ascending order
 int begin = 0;
 int end = N-1;
 int mid;
 while (begin <= end){
 mid = (end + begin)/2;
 if(arr[mid]==element){
 return true;
 }else if (arr[mid]< element){
 begin = mid + 1;
 }else{
 end = mid - 1;

 }
 }
 return false;
}

Binary Search Trees
• WHAT are the operations supported?

• HOW do we implement them?

• WHAT are the (worst case) running times of each operation?

!11

Height of the tree

!12

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of nodes and edges connecting a node with a descendant.
• A path starts from a node and ends at another node or a leaf
• Height of node – The height of a node is the number of edges on the longest

downward path between that node and a leaf.

!13

Worst case Big-O of search
• Given a BST of height H with N nodes,
what is the worst case complexity of
searching for a key?

A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

!14

Worst case Big-O of insert
• Given a BST of height H and N
nodes, what is the worst case
complexity of inserting a key?

A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

!15

Worst case Big-O of min/max
• Given a BST of height H and N nodes,
what is the worst case complexity of
finding the minimum or maximum key?

A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

!16

Worst case Big-O of predecessor/successor

• Given a BST of height H and N nodes,
what is the worst case complexity of
finding the predecessor or successor key?

A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

!17

Worst case Big-O of delete
• Given a BST of height H and N
nodes, what is the worst case
complexity of deleting the key
(assume no duplicates)?

A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

Worst case analysis
Are binary search trees really faster than linked lists for finding elements?
• A. Yes
• B. No

data:
next:

1 data:
next:

2 data:
next:

3

!18

Completely filled binary tree

42

32

12

45

41 50

!19

Nodes at each level have exactly two children,
except the nodes at the last level

43

Level 0

Level 1

Level 2

Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
How many nodes are on level L in a completely filled binary search tree?
A.2
B.L
C.2*L
D.2L

!20

Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
Finally, what is the height (exactly) of the tree in terms of N?

!21

Balanced trees
• Balanced trees by definition have a height of O(log N)
• A completely filled tree is one example of a balanced tree
• Other Balanced BSTs include AVL trees, red black trees and so on
• Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

!23

Big O of traversals

In Order:
Pre Order:
Post Order:

42

32

12

45

41 50

Summary of operations
Operation Sorted Array Binary Search Tree Linked List

Min
Max
Median
Successor
Predecessor
Search
Insert
Delete

