
RUNNING TIME ANALYSIS - PART 2
BINARY SEARCH TREES

Problem Solving with Computers-II

How is PA01 going?
A. Done!
B. On track to finish
C. On track to finish but my code is a mess
D. Stuck and struggling
E. Haven’t started

Midterm – Wednesday 5/15
• Cumulative but the focus will be on

• BST
• Running time analysis

Big O: What does it really mean?

of
In CReicursive f b

primitive i
operations

IIrahve fit
in

RunningTime n size ofthe input

Big O is an upper limit on the running

time of an algorithm as n gets large

f n 5 NZ log N t NI 110 00
z 0 N'log N

re

n

f n z 5 N'logN 1 Nat 1000g

S 5N logN 1N'logntweign

7 N'log N
ingen

flu O Neocon

A more precise definition of Big-O
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant
c > 0 and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g)
means that “f grows no faster than g”

C

I fCn
like

According to the definition on the previous

slide if f O g f Och for

any h g
So if f 0 N logN then technically

2 0 Ws

f a 0 Wh and so on

But in practice when doing Big o

analysis we look for the lowest

older function that satisfies the

definition ofBig oh
the tightest upper

bound to fCn

What is the Big-O running time of algoX?
• Assume dataA is some data structure that supports the following operations

with the given running times, where N is the number of keys stored in the
data structure:

• insert: O(log N)
• min: O(1)
• delete: O(log N)

void algoX(int arr[], int N)
{
 dataA ds;//ds contains no keys
 for(int i=0; i < N; i=i++)
 ds.insert(arr[i]);
 for(int i=0; i < N; i=i++)
 arr[i] = ds.min();
 ds.delete(arr[i]);
}

A. O(N2)
B. O(N logN)
C. O(N)
D. O(log N)
E. Not enough information to

compute

A
n

n is the no ofKeys in dsn D
n p

input E

Bad

Dam g

3

Reasons

Each insert takes adifferent

Running time of
amount of time

because

less than the running time depends

this loop is on the number ofkeys

C N togN already in ds

The first insert takes
the

least time the last one

takes the most

Although we don't know

Running time ofthis the exact numberof
Coop is less than operations for

each

insert we can find
N tag logN an upper limit

Specifically the

Overall running running timeof
each

insert is less than
time is a log N

G Nlog Nt CzN t GNlog
N

OCNlogW

Big-Omega
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Ω(g) if there are constants
c > 0, k>0 such that c · g(n) ≤ f(n)
for n >= k

f = Ω(g)
means that “f grows at least as fast as g”

Big-Theta
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Θ(g) if there are constants
c1, c2 , k such that 0 ≤ c1g(n) ≤ f(n) ≤
c2g(n), for n >=k

Running time

Problem Size (n)

Best case, worst case, average case running times

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

Operations on sorted arrays
• Min :
• Max:
• Median:
• Successor:
• Predecessor:
• Search:
• Insert :
• Delete:

Binary search Iteration Sizeof
8ft Nyu I gg mynnauay

OLD u 1 2 42
OLD N 2 3 My

depeaffthlhesearchdg µgNC k I
4g

N 8

zwgiii.EE b

Worst case analysis of binary search
!10

bool binarySearch(int arr[], int element, int N){
//Precondition: input array arr is sorted in ascending order
 int begin = 0;
 int end = N-1;
 int mid;
 while (begin <= end){
 mid = (end + begin)/2;
 if(arr[mid]==element){
 return true;
 }else if (arr[mid]< element){
 begin = mid + 1;
 }else{
 end = mid - 1;

 }
 }
 return false;
}

Worst case running time

See previous slide for getting
an upperlimi

on the numberof iterations

F

t

Overall dog Nti
s C

OClogN

Binary Search Trees
• WHAT are the operations supported?

• HOW do we implement them?

• WHAT are the (worst case) running times of each operation?

!11

Height of the tree

!12

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of nodes and edges connecting a node with a descendant.
• A path starts from a node and ends at another node or a leaf
• Height of node – The height of a node is the number of edges on the longest

downward path between that node and a leaf.

Path
5357

I 42 332 12

Height 2

!13

Worst case Big-O of search
• Given a BST of height H with N nodes,
what is the worst case complexity of
searching for a key?

A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

I G

I

2 O
GAH

!14

Worst case Big-O of insert
• Given a BST of height H and N
nodes, what is the worst case
complexity of inserting a key?

A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

0

!15

Worst case Big-O of min/max
• Given a BST of height H and N nodes,
what is the worst case complexity of
finding the minimum or maximum key?

A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

O Glo
O

yo Te

of0
8 Tho y

0 ofdo

!16

Worst case Big-O of predecessor/successor

• Given a BST of height H and N nodes,
what is the worst case complexity of
finding the predecessor or successor key?

A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

0

!17

Worst case Big-O of delete
• Given a BST of height H and N
nodes, what is the worst case
complexity of deleting the key
(assume no duplicates)?

A. O(1)
B. O(log H)
C. O(H)
D. O(H*log H)
E. O(N)

42

32

12

45

41 50

O

Worst case analysis
Are binary search trees really faster than linked lists for finding elements?
• A. Yes
• B. No

data:
next:

1 data:
next:

2 data:
next:

3

!18

0 In the worst case BST

looks like a linked list

and Hz W 1

In this case all
the operations

will be OCN
sameas

linked
list

Completely filled binary tree

42

32

12

45

41 50

!19

Nodes at each level have exactly two children,
except the nodes at the last level

43

Level 0

Level 1

Level 2

Ige A balanced BST by definition
is one where H oclog

we will show that a completely filed BST is

balanced To do this we have to showthat

its height is Ocwgn

Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
How many nodes are on level L in a completely filled binary search tree?
A.2
B.L
C.2*L
D.2L

!20

Levee nojga.nodes.at I
O 2 T
I I

ta Ee T
H 2H Level H

O

Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
Finally, what is the height (exactly) of the tree in terms of N?

!21

2kt z NTI

I 12 4 t 2 N H 2 logCANAL

4
2h I N

H log CNN 1

Funfact that we
used

in this proof the
larges

He 0Clog N non negative
no that

can be storedin 8 bits
i

1 12 4 t 27 28 1 25

Balanced trees
• Balanced trees by definition have a height of O(log N)
• A completely filled tree is one example of a balanced tree
• Other Balanced BSTs include AVL trees, red black trees and so on
• Visualize operations on an AVL tree: https://visualgo.net/bn/bst

!23

Big O of traversals

In Order:
Pre Order:
Post Order:

42

32

12

45

41 50

OW
OG
ow

Summary of operations
Operation Sorted Array Binary Search Tree Linked List

Min
Max
Median
Successor
Predecessor
Search
Insert
Delete

Worst case Big 0
Balanced

047 OclogN OLN
011 Ollogw OCN
04
OCD OleogN
OG 01108N

0110GW ClosN 01N
OCN Oclogn OG Inserttohead
OCN oclogw

