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BINARY SEARCH TREES 
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How is PA01 going?
A. Done! 
B. On track to finish 
C. On track to finish but my code is a mess 
D. Stuck and struggling 
E. Haven’t started



Midterm – Wednesday 5/15
• Cumulative but the focus will be on  

•  BST 
•  Running time analysis 



Big O: What does it really mean?
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A more precise definition of Big-O
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = O(g) if there is a constant 
c > 0  and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g) 
means that “f grows no faster than g”
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What is the Big-O running time of algoX?
• Assume dataA is some data structure that supports the following operations 

with the given running times, where N is the number of keys stored in the 
data structure: 

• insert: O(log N)  
• min: O(1) 
• delete: O(log N) 

void algoX(int arr[], int N) 
{   
       dataA ds;//ds contains no keys   
       for(int i=0; i < N; i=i++)     
              ds.insert(arr[i]); 
       for(int i=0; i < N; i=i++)     
              arr[i] = ds.min(); 
              ds.delete(arr[i]);  
}

A. O(N2) 
B. O(N logN) 
C. O(N) 
D. O(log N) 
E. Not enough information to 

compute
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Reasons

Each insert takes adifferent
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Big-Omega
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = Ω(g) if there are constants 
c > 0, k>0 such that c · g(n) ≤ f(n) 
for n >=  k

f = Ω(g)
means that “f grows at least as fast as g”



Big-Theta
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = Θ(g) if there are constants 
c1, c2 , k such that 0 ≤ c1g(n) ≤ f(n) ≤ 
c2g(n), for n >=k

Running time

Problem Size (n)



Best case, worst case, average case running times
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Operations on sorted arrays 
• Min :  
• Max:  
• Median:  
• Successor:  
• Predecessor:  
• Search: 
• Insert :  
• Delete:
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Worst case analysis of binary search
!10

bool binarySearch(int arr[], int element, int N){  
//Precondition: input array arr is sorted in ascending order 
  int begin = 0; 
  int end = N-1; 
  int mid; 
  while (begin <=  end){ 
    mid = (end + begin)/2; 
    if(arr[mid]==element){ 
      return true; 
    }else if (arr[mid]< element){ 
      begin = mid + 1;     
    }else{ 
      end = mid - 1; 
     
    }    
  } 
  return false; 
}

Worst case running time

See previous slide for getting
an upperlimi
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Binary Search Trees
• WHAT are the operations supported? 

• HOW do we implement them? 

• WHAT are the (worst case) running times of each operation? 

!11



Height of the tree
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BSTs of different heights are possible with the same set of keys 
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of nodes and edges connecting a node with a descendant. 
• A path starts from a node and ends at another node or a leaf 
• Height of node – The height of a node is the number of edges on the longest 

downward path between that node and a leaf.

Path
5357

I 42 332 12

Height 2
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Worst case Big-O of search
• Given a BST of height H with N nodes, 
what is the worst case complexity of 
searching for a key? 

A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)

42
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45

41 50
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Worst case Big-O of insert
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of inserting a key? 

A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)
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Worst case Big-O of min/max
• Given a BST of height H and N nodes, 
what is the worst case complexity of 
finding the minimum or maximum key? 

A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)

42

32

12

45

41 50
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Worst case Big-O of predecessor/successor

• Given a BST of height H and N nodes, 
what is the worst case complexity of 
finding the predecessor or successor key? 

A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)
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Worst case Big-O of delete
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of deleting the key 
(assume no duplicates)? 

A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)
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Worst case analysis
Are binary search trees really faster than linked lists for finding elements? 
• A. Yes 
• B. No

data:
next:

1 data:
next:

2 data:
next:

3
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0 In the worst case BST

looks like a linked list

and Hz W 1
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Completely filled binary tree
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Nodes at each level have exactly two children, 
except  the nodes at the last level

43

Level 0

Level 1

Level 2

Ige A balanced BST by definition
is one where H oclog

we will show that a completely filed BST is

balanced To do this we have to showthat

its height is Ocwgn



Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
How many nodes are on level L in a completely filled binary search tree? 
A.2 
B.L 
C.2*L 
D.2L
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Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
Finally, what is the height (exactly) of the tree in terms of N?

!21
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Balanced trees
• Balanced trees by definition have a height of O(log N) 
• A completely filled tree is one example of a balanced tree 
• Other Balanced BSTs include AVL trees, red black trees and so on 
• Visualize operations on an AVL tree: https://visualgo.net/bn/bst
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Big O of traversals

In Order: 
Pre Order: 
Post Order:
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Summary of operations
Operation Sorted Array Binary Search Tree Linked List

Min
Max
Median
Successor
Predecessor
Search
Insert
Delete

Worst case Big 0
Balanced
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