
 
LINKED LISTS AND THE RULE OF THREE
UNIT TESTING
OPERATOR OVERLOADING

Problem Solving with Computers-II

Linked Lists
!2

Linked List

Array List 1 2 3

What is the key difference between these?

Questions you must ask about any data structure:
!3

• What operations does the data structure support?
 A linked list supports the following operations:

1. Insert (a value)
2. Delete (a value)
3. Search (for a value)
4. Min
5. Max
6. Print all values

• How do you implement each operation?
• How fast is each operation?

Linked-list as an Abstract Data Type (ADT)
class LinkedList {
public:
 LinkedList(); // constructor
 ~LinkedList(); // destructor
 // other methods
private:
 // definition of Node
 struct Node {
 int info;
 Node *next;
 };
 Node* head; // pointer to first node
 Node* tail;
};

Unit testing
• The goal of unit tests is to design your software robustly (usually viaTest

Driven Development)
• For our purposes each public method of a class is a unit under test

(UUT)
• Organizing your unit tests

• One test class for every class under test.
• If the class to test is Foo, the test class should be called FooTest (not

TestFoo)
• One test function for every public function of Foo. This a suite of

individual test cases
• Test cases should be independent
• Test cases should be orthogonal
• For additional guidelines see: https://petroware.no/unittesting.html

https://petroware.no/unittesting.html

Overloading Binary Comparison Operators

void isEqual(const LinkedList & lst1, const LinkedList &lst2){
 if(lst1 == lst2)

 cout<<“Lists are equal”<<endl;
else
 cout<<“Lists are not equal”<<endl;

}

We would like to be able to compare two objects of the class using the
following operators
==
!=
and possibly others

RULE OF THREE
If a class defines one (or more) of the following it should probably explicitly
define all three:
1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:
1. What is the behavior of these defaults?
2. What is the desired behavior ?
3. How should we over-ride these methods?

void test_append_0(){
string testname = "test 0: append [1] “;

 vector<int> v_exp = {1};
LinkedList ll;
ll.append(1);
vector<int> v_act = ll.vectorize();
if(v_act!=v_exp){

cout <<"\tFAILED "<<testname<<endl;
}else{

cout <<"\tPASSED "<<testname<<endl;

}
}

What is the expected behavior of this code?
A. Compiler error
B. Memory leak
C. Code is correct and the test passes
D. None of the above

Assume default destructor, copy constructor, copy assignment AND
Correct implementation of the methods append() and vectorize()

Behavior of default copy constructor
Assume that your implementation of LinkedList uses the overloaded destructor,
default: copy constructor, copy assignment
l1 : 1 -> 2- > 5 -> null
void default_copy_constructor(LinkedList& l1){

// Use the copy constructor to create a
// copy of l1

}
* What is the default behavior?
* Is the default behavior the outcome we desire ?
* How do we change it?

Behavior of default copy assignment
Assume that your implementation of LinkedList uses the override
destructor, copy constructor, default copy assignment
l1 : 1 -> 2- > 5 -> null

void default_assignment_1(LinkedList& l1){
LinkedList l2;
l2 = l1;

}
* What is the default behavior?

Behavior of default copy assignment
Assume that your implementation of LinkedList uses the overloaded
destructor, default: copy constructor, copy assignment
l1 : 1 -> 2- > 5 -> null
void test_default_assignment_2(LinkedList& l1){

// Use the copy assignment
LinkedList l2;
l2.append(10);
l2.append(20);
l2 = l1;

}
* What is the default behavior?

Next time
• Linked Lists contd.
• GDB

