(O

LINKED LISTS AND THE RULE OF THREE
UNIT TESTING
OPERATOR OVERLOADING

Problem Solving with Computers-II C
l ' GitHub
““::qui;::;ce =3 5
vs a‘ﬁn\ N ,,_—3‘—,-3'~3""'

e
/|

Linked Lists

The Drawing Of List {1, 2, 3}

. 5 5 Array List

n b 2 |)
Stack Heap Y VY O Y % YU 3 i,

nodes together by their next pointers. The

2 S.’Ml(c Lked W3
head | _ [The overall list is built by connecting the

nodes are all allocated in the heap. i i
Nodt P Linked List
O3~C —~CID
A “head” pointer local to Each node Each node stores The next field of
BuildOneTwoThree() keeps stores one one next pointer. the last node is
the whole list by storing a data element NULL.
pointer to the first node. (int in this

example). What is the key difference between these?

gl'.,\sk Luwhed (34 = |

h<ad
~>GEDPEDCD

ovact Nods 3
nt J“Jt\"
Neele ¢+ next;
%
Jai
AT
prev ﬂJ#l- act nect
Douwble - U‘““"‘J Lar
ohuc Nodt T
{hs o’o.l—u)
Nodt ¥ F{Q’\)"‘
V\)O(','A * V\L"*)

-
Questions you must ask about any data structure:

 What operations does the data structure support?
A linked list supports the following operations:
1. Insert (a value)

L oes

2. Delete (a value) Vm%\.‘c ekt AZ)

3. Search (for a value) Lward Losk

4. Min '

5. Max

6. Print all values o

(XC‘QA Jest
* How do you implement each operation? Pre +ot)N) fb(_m))
. . . el C

 How fast is each operation? Drive~ D

(Frruve lechure?)) t'lh-‘?lw eosl tuy\zhv'h

s L A A i
Linked-list as an Abstract Data Type (ADT)

class LinkedList {

public:
LinkedList(); // constructor
~LinkedList(); // destructor
// other methods

private:

// definition of Node

struct Node {
int info; 25—3 Nodes wq S(v\jie livled Loy
Node *next;

}i

Node* head; // pointer to first node

Node* tail; // poinker ko e \er Moda

D eeeeeeeee—_tr
Unit testing

* The goal of unit tests is to design your software robustly (usually viaTest
Driven Development)
» For our purposes each public method of a class is a unit under test
(UUT)
* Organizing your unit tests
» One test class for every class under test.
* If the class to test is Foo, the test class should be called FooTest (not
TestFoo)
» One test function for every public function of Foo. This a suite of
individual test cases
» Test cases should be independent
* Test cases should be orthogonal

* For additional guidelines see: https://petroware.no/unittesting.html
Pleoane Aeuitw wdl whitfew (n e it aovHM*’-)

E,,MH46Z6U6AZSWWH
Overloading Binary Comparison Operators

We would like to be able to compare two objects of the class using the
following operators

1= % NC,{“ dsouss oven LoaAXj
3N

o et c)}umku
and possibly others

A naal ¢ 8 oS

void isEqual(const LinkedList & Ist1, const LinkedList &Ist2){
if(Ist1 == Ist2)
cout<<‘“Lists are equal”’<<end]l;
else
cout<<“Lists are not equal”’<<endl;

RULE OF THREE (N« clags 4 need ﬁjs\@v
fabol)

If a class defines one (or more) of the following it should probably explicitly
define all three:

1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:

1. What is the behavior of these defaults?

2. What is the desired behavior ?

3. How should we over-ride these methods?

Assume default destructor, copy constructor, copy assignment AND
Correct implementation of the methods append() and vectorize()

void test_append_0(){
string testname = "test 0: append [1] “;
vector<int> v_exp = {1};
LinkedList 11;
ll.append(1);
vector<int> v_act = ll.vectorize();

if(v_act!=v_exp)

cout <<"\tFAILED "<<testname<<endl;
}else{

cout <<"\tPASSED "<<testname<<endl;

What is the expected behavior of this code?
A. Compiler error

B. Memory leak

C. Code is correct and the test passes

D. None of the above

Behavior of default copy constructor

Assume that your implementation of LinkedList uses the overloaded destructor,
default: copy constructor, copy assignment

1:1->2->5->null

void default copy constructor(LinkedList& 11){
// Use the copy constructor to create a
// copy of 11

* What is the default behavior?
Is the default behavior the outcome we desire ?
* How do we change it?

*

E,,MH46Z6U6AZSWWH
Behavior of default copy assignment

Assume that your implementation of LinkedList uses the override
destructor, copy constructor, default copy assignment

1:1->2->5->null

void default assignment 1(LinkedListé& 11) {
LinkedList 12;
12 = 11;

}

* What is the default behavior?

Behavior of default copy assignment

Assume that your implementation of LinkedList uses the overloaded
destructor, default: copy constructor, copy assignment

1:1->2->5->null
void test default assignment 2(LinkedList& 11)({
// Use the copy assignment
LinkedList 12;
12.append(10);
12.append(20);
12 = 11;
}
* What is the default behavior?

Next time

* Linked Lists contd.
- GDB

