
 
LINKED LISTS (CONTD)
 RULE OF THREE
 DEALING WITH MEMORY ERRORS
 MORE ON OPERATOR OVERLOADING

Problem Solving with Computers-II

Memory Errors
• Memory Leak: Program does not free memory allocated on the heap.

• Segmentation Fault: Code tries to access an invalid memory location

RULE OF THREE
If a class overload one (or more) of the following methods, it should overload all
three methods:
1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:
1. What is the behavior of these defaults?
2. What is the desired behavior ?
3. How should we over-ride these methods?

void test_append_0(){
 vector<int> v_exp = {1};

LinkedList ll;
ll.append(1);
vector<int> v_act = ll.vectorize();
TESTEQ(v_exp, v_act, “test 0");

}

Assume:
destructor: default
copy constructor: default
copy assignment: default

What is the output?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. Test fails
E. None of the above

Behavior of default destructor

A. To free LinkedList objects
B. To free Nodes in a LinkedList
C. Both A and B
D. None of the above

Why do we need to write a destructor for LinkedList?

Behavior of default copy constructor
void test_copy_constructor(){

LinkedList l1;
l1.append(1);
l1.append(2);
LinkedList l2(l1);
TESTEQ(l1, l2, "test copy constructor”);

}

Assume:
destructor: overloaded
copy constructor: default
copy assignment: default

What is the output?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. Test fails
E. None of the above

Behavior of default copy assignment
void test_copy_assignment(){

LinkedList l1;
l1.append(1);
l1.append(2);
LinkedList l2;
l2 = l1;

TESTEQ(l1, l2, "test copy assignment”);
} What is the output?

A. Compiler error
B. Memory leak
C. Segmentation fault
D. Test fails
E. None of the above

Assume:
destructor: overloaded
copy constructor: overloaded
copy assignment: default

Write another test case for the copy assignment
void test_copy_assignment_2(){

}

Overloading Binary Comparison Operators

Last class: overloaded == for LinkedList

We would like to be able to compare two objects of the class using the
following operators
==
!=
and possibly others

Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows

LinkedList l1, l2;

//append nodes to l1 and l2;

LinkedList l3 = l1 + l2 ;

Overloading input/output stream
Wouldn’t it be convenient if we could do this:

LinkedList list;
cout<<list; //prints all the elements of list

Next time
• Recursion + PA01

