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Announcements
• PA01 will be released tomorrow (04/18), due (05/07) 
• Lab02 due tomorrow Thursday (4/18) 
• Midterm next week (Wed)(04/24) - All topics covered so far. 
   For more details visit https://ucsb-cs24.github.io/s19/exam/e01/ 
• TAs and Tutors will hold review sessions on Monday and Tuesdays (1p-2p). 

Look out for announcements on Piazza 



PA01: Card matching game with linked lists
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Review PA01: Card matching game with linked lists
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GDB: GNU Debugger
 - To use gdb, compile with the -g flag 
 - Setting breakpoints (b) 
 - Running programs that take arguments within gdb (r arguments) 
 - Continue execution until breakpoint is reached (c) 
 - Stepping into functions with step (s) 
 - Stepping over functions with next (n) 
 - Re-running a program (r) 
 - Examining local variables  (info locals) 
 - Printing the value of variables with print (p) 
 - Quitting gdb (q) 
 - Debugging segfaults with backtrace (bt) 
* Refer to the gdb cheat sheet: http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf 



Behavior of default copy assignment
void test_copy_assignment(){

LinkedList l1;
l1.append(1);
l1.append(2);
LinkedList l2;
l2 = l1;
TESTEQ(l1, l2, "test copy assignment”);

} What is the output? 
A. Compiler error 
B. Memory leak 
C. Segmentation fault 
D. Test fails 
E. None of the above

Assume: 
destructor: overloaded 
copy constructor: overloaded 
copy assignment: default
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Write another test case for the copy assignment
void test_copy_assignment_2(){

}
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Write another test case for the copy assignment
void test_copy_assignment_2(){

}

Suppose that the assignmentoperator
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Overloading Binary Comparison Operators

Last class: overloaded == for LinkedList

We would like to be able to compare two objects of the class using the 
following operators 
== 
!= 
and possibly others

all these operators
can be used

with tinted list objects
If

you implement
them as

operator functions

To overload the operatorfor link'd list declare
it as

a public member function as follows
Void operators const Linholist source
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fffa void return type only of the form 11 12



In the lab 02 code the return type for the

assignment operator
was a reference to

a lined list

linked list operator
const lineedlist source
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Overloading input/output stream
Wouldn’t it be convenient if we could do this: 

LinkedList list;
cout<<list; //prints all the elements of list



Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows 

LinkedList l1, l2;

//append nodes to l1 and l2;

LinkedList l3 = l1 + l2 ;



Recursion

Zooming into a Koch’s snowflake

Sierpinski triangle

Describe a linked-list recursively



Which of the following methods of LinkedList CANNOT be 
implemented using recursion? 

A. Find the sum of all the values 
B. Print all the values 
C. Search for a value 
D. Delete all the nodes in a linked list 
E. All the above can be implemented using recursion
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int IntList::sum(){

    //Return the sum of all elements in a linked list                         
}



Helper functions
• Sometimes your functions takes an input that is not easy to recurse on 
• In that case define a new function with appropriate parameters: This is 

your helper function 
• Call the helper function to perform the recursion  
• Usually the helper function is private 
For example 

Int IntList::sum(){
 
return sum(head); 
 //helper function that performs the recursion.

}
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int IntList::sum(Node* p){

                          

}
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bool IntList::clear(Node* p){

                          

}



Concept Question

       

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list 
(E): A and D

LinkedList::~LinkedList(){ 
delete head; 

} 
                                              

Which of the following objects are deleted when the destructor of Linked-list is called?

    class Node { 
        public: 
           int info; 
           Node *next; 
    };



Concept question

       

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B 
(D): Program crashes with a segmentation fault 
(E): None of the above

LinkedList::~LinkedList(){ 
delete head; 

} 
                                              

Which of the following objects are deleted when the destructor of Linked-list is called?

    Node::~Node(){ 
    delete next; 

    }



LinkedList::~LinkedList(){ 
delete head; 

} 
                                              

    Node::~Node(){ 
    delete next; 

    }

       

head tail



Next time
• Binary Search Trees


