
MORE ON GDB AND RULE OF THREE
RECURSION
INTRO TO PA01

Problem Solving with Computers-II

U

Announcements
• PA01 will be released tomorrow (04/18), due (05/07)
• Lab02 due tomorrow Thursday (4/18)
• Midterm next week (Wed)(04/24) - All topics covered so far.
 For more details visit https://ucsb-cs24.github.io/s19/exam/e01/
• TAs and Tutors will hold review sessions on Monday and Tuesdays (1p-2p).

Look out for announcements on Piazza

PA01: Card matching game with linked lists
!3

Alice:

Bob:

or as an

ox i x

Review PA01: Card matching game with linked lists
!4

x x x

GDB: GNU Debugger
 - To use gdb, compile with the -g flag
 - Setting breakpoints (b)
 - Running programs that take arguments within gdb (r arguments)
 - Continue execution until breakpoint is reached (c)
 - Stepping into functions with step (s)
 - Stepping over functions with next (n)
 - Re-running a program (r)
 - Examining local variables (info locals)
 - Printing the value of variables with print (p)
 - Quitting gdb (q)
 - Debugging segfaults with backtrace (bt)
* Refer to the gdb cheat sheet: http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Behavior of default copy assignment
void test_copy_assignment(){

LinkedList l1;
l1.append(1);
l1.append(2);
LinkedList l2;
l2 = l1;
TESTEQ(l1, l2, "test copy assignment”);

} What is the output?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. Test fails
E. None of the above

Assume:
destructor: overloaded
copy constructor: overloaded
copy assignment: default

i E
IT 122 equal L1 El 2 operator U

name ofa
In this case ll l 2 share the function
samenodes After thetestfunction

returns 11 s destructoriscalled
Whichdeletesall's
model

12sdestructor
is called

whichtriestodeletethesamenodes doublefreeCseqfault

Write another test case for the copy assignment
void test_copy_assignment_2(){

}

1 9

11Similar to previous ease except I 2 has existing

11nodes before the assignmentoperator
is applied

linked list ll
ll append i

le append Cali
linked list L2
L2 append 33
l2 ec
TESTEQ ee 12 case two

Write another test case for the copy assignment
void test_copy_assignment_2(){

}

Suppose that the assignmentoperator

ll D
Memo Yin.mn

rel2

D Xg
memory

Leak

ez

Overloading Binary Comparison Operators

Last class: overloaded == for LinkedList

We would like to be able to compare two objects of the class using the
following operators
==
!=
and possibly others

all these operators
can be used

with tinted list objects
If

you implement
them as

operator functions

To overload the operatorfor link'd list declare
it as

a public member function as follows
Void operators const Linholist source

works if the intendedusage
is always

fffa void return type only of the form 11 12

In the lab 02 code the return type for the

assignment operator
was a reference to

a lined list

linked list operator
const lineedlist source

T
The feturn type

is a lined list so that the
overloaded

operator
can be used in more complex

assignment expressions
for example expressions

of the form
11 12 I3

This subexpression callB
12s e'operator

passing 13 as a parameter

If the operator
returns a void then the

sub expression e 2 13 will evaluate
to a

void

Overloading input/output stream
Wouldn’t it be convenient if we could do this:

LinkedList list;
cout<<list; //prints all the elements of list

Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows

LinkedList l1, l2;

//append nodes to l1 and l2;

LinkedList l3 = l1 + l2 ;

Recursion

Zooming into a Koch’s snowflake

Sierpinski triangle

Describe a linked-list recursively

Which of the following methods of LinkedList CANNOT be
implemented using recursion?

A. Find the sum of all the values
B. Print all the values
C. Search for a value
D. Delete all the nodes in a linked list
E. All the above can be implemented using recursion

4050 2010

head

int IntList::sum(){

 //Return the sum of all elements in a linked list
}

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion
• Usually the helper function is private
For example

Int IntList::sum(){

return sum(head);
 //helper function that performs the recursion.

}

4050 2010

head

int IntList::sum(Node* p){

}

4050 2010

head

bool IntList::clear(Node* p){

}

Concept Question

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list
(E): A and D

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 class Node {
 public:
 int info;
 Node *next;
 };

Concept question

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B
(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 Node::~Node(){
 delete next;

 }

LinkedList::~LinkedList(){
delete head;

}

 Node::~Node(){
 delete next;

 }

head tail

Next time
• Binary Search Trees

