MORE ON GDB AND RULE OF THREE
RECURSION
INTRO TO PAO1

Problem Solving with Computers-II C
lm, ' GitHub
" aosa‘:: g ¥
” t“'x;\::q aanes? e ®

1l

B
Announcements

PAO1 will be released tomorrow (04/18), due (05/07)

Lab02 due tomorrow Thursday (4/18)

Midterm next week (Wed)(04/24) - All topics covered so far.

For more details visit https://ucsb-cs24.qithub.io/s19/exam/e01/

TAs and Tutors will hold review sessions on Monday and Tuesdays (1p-2p).
Look out for announcements on Piazza

PAO1: Card matching game with linked lists

Genevieve Bell
Australian National Uni
Director - Autonomy, Agency and
Asurance Insitute, ABI Woman
of Vision, WITI Hall of Fame.

Groun far: combining anthropoi-
ogy and tech to explore social,
cultural aspects of ubiquitous
computing

b ko il
Geves

NIAC computer programmer
team 1946, Fellow Computer
History Muscum, IEEE
Computer Pioneer Award. Kiwien
Jor being a pioncet in progrum-
ing
al-purpose mmpnu‘n
g e wikipedia.ong/wiki/Jean_Barth

iqLAAnnnbn'ﬁwl 5

Cormomn SR 0

i

Fran Bilas

ENIAC computer programimer
fcam 1940, WITI Hallof Fam

1 fir: being a pionecr in pro-
racnitg the ft lecttomse goner-
al-purpose computer

Frances, Spe

o s operating ENIAC
ity el i
.,.\.mn D v Wik

&

Radia Perlman

Intel Fellow, IEEE and ACM
Fellow, first ABI Woman of Vision
rd winner, National Inventors

[I all of Fame, Internet Hall of
e. Riwwon for: contributions to
suting and security pro-

enwikapedinorg/wiki/
Radia_feriman

¥
Y

Sophie Wilson
R Mmmmpum,
Broadcom Director IC Design,
Computer History Muscum'

i anson
LhO ol AGM, Former RIT Dis-
d ProL, Prof, Uniy. ur

Irene Greif
ABI’E Award lhr']'cdu\wnl Lead-
g;l‘r'lldcc. Fellow | I Society

L ACM Fellow, ,\m Fellow, Fel] Group, ACM Fellow,
Woman of Vision. Ken Socicty. Kuien fir: computer Fellow, Formed Lotus Rescarch
wibutions to mm))uung lcdmnlo- hardsware design and for leader- 1992. Known for: pioncering the

gics for people with disabil

e fen,
Y en et

ship in the transgender technical
community.

g i g i Sopbic Wi ‘

ficd o Compttcr Supporied
Coaperaiive Wark

i/ /e wikipecia.ong ki Lrene_Greil
o o B S gemosonnd

Sophle Wilson
Designer Acorn Microcomputer,
Broadeom Diecor IC Desin,

Rmfvlhwo{ﬂltknyll

ki e desin and L
ware

ship in

Irene Greif
ABIE Awad or Techwical Lead-

T

g/ /e idpeci.ong/wiki/Iree_Gret “’"“""““"Y‘

Photo Source: of *Nosh

Irene Greif by Smith.” Licersed under
Auribution 2.0 Generic (CC BY 20, -
bith/2RSTOfL.

6

uter
leader-
technical

[i

erlman
Tt Felon: EEE, and aCM
Fellow, irst ABI Woman of Vision
avard vinner, Natonal Invertors

network routing and securiy pro-
tocols.

/ey

¢

T
Review PAO1: Card matching game with linked lists
Correct output after running make && ./game alice_cards.txt bob_cards.txt:
Alice picked matching card c 3

Bob picked matching card s a
Alice picked matching card h 9

Contents of alice_cards.txt:

Alice's cards:
h 3
s 2
c a

Bob's cards:
c 2
dj

Note: 0=10, a=ace, k=king, g=queen, j=jack

E,,MH46Z6U6AZSWWH
GDB: GNU Debugger

- To use gdb, compile with the -g flag

- Setting breakpoints (b)

- Running programs that take arguments within gdb (r arguments)
- Continue execution until breakpoint is reached (c)

- Stepping into functions with step (s)

- Stepping over functions with next (n)

- Re-running a program (r)

- Examining local variables (info locals)

- Printing the value of variables with print (p)

- Quitting gdb (q)

- Debugging segfaults with backtrace (bt)

* Refer to the gdb cheat sheet: http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Behavior of default copy assignment
)

void test copy assignment() {]
LinkedList 11; \

~ +
ll.append(1); 1?' K

ll.append(2);

At
LinkedList 12; .z Q2.0 rabor=
[12 = 11; | 2. equad (}U)/ LP/le"

TESTEQ(1ll, 12, "test copy assignment”); name a{;a

} Thn S case L3 L2 ghare The . /JPUI\()\“W

same nodes . Aften Hae st fundhion What is the output?
Assume: rehuwng L\'s desvudsy is colld) A. Compiler error

i deletre US
destructor: overloaded N“,\fw;ﬁ% Tho B. Memory leak
C. Segmentation fault

copy constructor: overloaded 12's dec _
s cald, (D Test fails

copy assignment: default . .
delese Hhe 3ame NOdas = C,Out)lm (?u;?umHE. None of the above

(4

e
Write another test case for the copy assignment

void test copy assignment 2(){

(& h'
//g\'rvu‘[ar D) LNG WA (0L (.ch,{)# 02 hw oX (8 @
/| nodun M[«;& Fle %ijw" olwohv & aff(rca)

Lnteed Lis- L1
(. o\ppzma ()
A - OLPPM (e
Lomdodlsk 22
2. OL'DI';UA&L'E)"

22 - Q(} . ' .
} Testea (s 82, T Cobe fo E

Write another test case for the copy assignment

SIAPPOSL thor the o\s%ts\«mu\(o})i‘r:kw
eventebt &3
hes e gl B2 5P L) S

U 7 CD—GED

%Wﬂ
12

gr =L j@

void test copy assignment 2(){

E,,MH46Z6U6AZSWWH
Overloading Binary Comparison Operators

We would like to be able to compare two objects of the class using the
following operators Cadeer can be UMD

== &&\ d,ﬁ\&&(0 ' A
= 28/ st Linid Lr Ob)ecks RS

and possibly others

Last class: overloaded == for LinkedList \ . - o
a public Al b€ v (Fvw\cbdv\ a4 followe -
Q Spwrce 3/‘

- sk
Void dperayr= (ot Lobedlish £

A Vel Teturn fb(‘)c or\b 1oErle "

Ly Ahe lab02 Code, he efurn CJPC Av
a&%sv\w a’,w:J,,/ wan 4 fqerenw ¢ Lonldlask |
~ (wnsY LAl dUn & sourle) -

] inlced Lost > ot
S &J PU"-‘« -

"W\(s Sub oxpretsit Qd‘} |2 e oyemm
Po&h\()s 12 as © Faf&mz_!-c/\
3{ o o,?o\odb»(Tehat N o\‘\ \rﬁﬁu Haa HrsC

éKF{MN L= ,Q?.f:,o_s) ol Al J oM to

Q1 =ufds /

T Hus @Rt d’(/*\‘: O?ero.h*/ s beiy reed

pdhoeem ¢ UM&@ Leek ébj}d' ond a “D‘) i
\S Tm)lalew\ola‘c . e arokcdp Aundlson d\.%lm'%‘d\,

) waut b W &@M‘ (P lewul-cloom

Qo,
” { ab‘:mvw}“ ol 3
9 ppuet oo 3
frewn Uelr= 2> , —Showtd fehunfo

€ mok O uwm/f\hx

wP Wl be ng&c} jutf h (N
\jab.uz 's | |
. Thas K wnnecessaf i 1 N@
We | feka o Tefefence

Overloading input/output stream

Wouldn’t it be convenient if we could do this:

LinkedList list;
cout<<list; //prints all the elements of list

J Hus expecks o An koo] fone P
preowd ow Lnuedlst B8
be VR0 but as ddove f

puind Ll

).
lTEAszkﬂﬁvﬂ'<:<L (: | FJAIXMD
ehArn (tjP& Mj

h wilh &»

Feoun &
: u ghodd br &
CIWJ’<3LQJ'<L(-Q“;u P 8 N +7P£_

Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows

LinkedList 11, 12;
//append nodes to 11 and 12;

LinkedList 13 = 11 + 12 ;

Recursion

Describe a linked-list recursively

Which of the following methods of LinkedList CANNOT be
implemented using recursion?

A. Find the sum of all the values

B. Print all the values

C. Search for a value

D. Delete all the nodes in a linked list

E. All the above can be implemented using recursion

G ()

int IntList::sum(){

//Return the sum of all elements in a linked list

e
Helper functions

« Sometimes your functions takes an input that is not easy to recurse on

* In that case define a new function with appropriate parameters: This is
your helper function

« Call the helper function to perform the recursion

» Usually the helper function is private

For example

Int IntList::sum(){

return sum(head);
//helper function that performs the recursion.

NGEE GG

int IntList::sum(Node* p){

C GG CelD

bool IntList::clear(Node* p){

Concept Question class Node {

: e : public:
LinkedList::~LinkedList()A{ int info:
delete head; Node *next:
b }i
Which of the following objects are deleted when the destructor of Linked-list is called?
head tail

(A)
(B): only the first node
(C):Aand B

(D): All the nodes of the linked list
(E):Aand D

Concept question

LinkedList::~LinkedList(){ Node: :~Node(){
delete head; delete next;

} }

Which of the following objects are deleted when the destructor of Linked-list is called?

head tail

T

(B): All the nodes in the linked-list

(C):Aand B

(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){ Node: :~Node(){
delete head; delete next;

} }
head tail

~C D~

Next time

* Binary Search Trees

