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Announcements

PAO1 will be released tomorrow (04/18), due (05/07)

Lab02 due tomorrow Thursday (4/18)

Midterm next week (Wed)(04/24) - All topics covered so far.

For more details visit https://ucsb-cs24.qithub.io/s19/exam/e01/

TAs and Tutors will hold review sessions on Monday and Tuesdays (1p-2p).
Look out for announcements on Piazza



PAO1: Card matching game with linked lists
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Review PAO1: Card matching game with linked lists
Correct output after running make && ./game alice_cards.txt bob_cards.txt:
Alice picked matching card c 3

Bob picked matching card s a
Alice picked matching card h 9

Contents of alice_cards.txt:

Alice's cards:
h 3
s 2
c a

Bob's cards:
c 2
dj

Note: 0=10, a=ace, k=king, g=queen, j=jack
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GDB: GNU Debugger

- To use gdb, compile with the -g flag

- Setting breakpoints (b)

- Running programs that take arguments within gdb (r arguments)
- Continue execution until breakpoint is reached (c)

- Stepping into functions with step (s)

- Stepping over functions with next (n)

- Re-running a program (r)

- Examining local variables (info locals)

- Printing the value of variables with print (p)

- Quitting gdb (q)

- Debugging segfaults with backtrace (bt)

* Refer to the gdb cheat sheet: http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf



Behavior of default copy assignment
)

void test copy assignment() { ]
LinkedList 11; \

~ +
ll.append(1); 1?' K

ll.append(2);
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Write another test case for the copy assignment

void test copy assignment 2(){
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Write another test case for the copy assignment
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Overloading Binary Comparison Operators

We would like to be able to compare two objects of the class using the
following operators Cadeer can be UMD

== &&\ d,ﬁ\&&( 0 ' A
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and possibly others
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Overloading input/output stream

Wouldn’t it be convenient if we could do this:

LinkedList list;
cout<<list; //prints all the elements of list
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Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows

LinkedList 11, 12;
//append nodes to 11 and 12;

LinkedList 13 = 11 + 12 ;



Recursion

Describe a linked-list recursively



Which of the following methods of LinkedList CANNOT be
implemented using recursion?

A. Find the sum of all the values

B. Print all the values

C. Search for a value

D. Delete all the nodes in a linked list

E. All the above can be implemented using recursion
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int IntList::sum(){

//Return the sum of all elements in a linked list
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Helper functions

« Sometimes your functions takes an input that is not easy to recurse on

* In that case define a new function with appropriate parameters: This is
your helper function

« Call the helper function to perform the recursion

» Usually the helper function is private

For example

Int IntList::sum(){

return sum(head);
//helper function that performs the recursion.
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int IntList::sum(Node* p){
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bool IntList::clear(Node* p){




Concept Question class Node {

: e : public:
LinkedList::~LinkedList()A{ int info:
delete head; Node *next:
b }i
Which of the following objects are deleted when the destructor of Linked-list is called?
head tail

(A)
(B): only the first node
(C):Aand B

(D): All the nodes of the linked list
(E):Aand D




Concept question

LinkedList::~LinkedList(){ Node: :~Node(){
delete head; delete next;

} }

Which of the following objects are deleted when the destructor of Linked-list is called?

head tail

T

(B): All the nodes in the linked-list

(C):Aand B

(D): Program crashes with a segmentation fault
(E): None of the above




LinkedList::~LinkedList(){ Node: :~Node(){
delete head; delete next;

} }
head tail

~C D~




Next time

* Binary Search Trees



