
RECURSION

Problem Solving with Computers-II

Recursion

Zooming into a Koch’s snowflake

Sierpinski triangle

 Koch’s snowflake

Fractal Tree

Which of the following methods of class LinkedList CANNOT be
implemented using recursion?

A. Finding the sum of all the values
B. Printing all the values
C. Deleting all the nodes in a linked list
D. Searching for a value
E. All the above can be implemented using recursion

4050 2010

head

int IntList::sum(){

 //Return the sum of all elements in a linked list
}

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion
• Usually the helper function is private
For example

Int IntList::sum(){

return sum(head);
 //helper function that performs the recursion.

}

4050 2010

head

int IntList::sum(Node* p){

}

4050 2010

head

bool IntList::clear(Node* p){

}

Concept Question

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list
(E): A and D

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 class Node {
 public:
 int info;
 Node *next;
 };

Concept question

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B
(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){
delete head;

}

Which of the following objects are deleted when the destructor of Linked-list is called?

 Node::~Node(){
 delete next;

 }

LinkedList::~LinkedList(){
delete head;

}

 Node::~Node(){
 delete next;

 }

head tail

Binary Search
• Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.

• Invariant. Algorithm maintains a[lo] ≤ value ≤ a[hi].

• Ex. Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

Trees

!12

 A tree has following general properties:
 • One node is distinguished as a root;
 • Every node (exclude a root) is connected

by a directed edge from exactly one other
node;

 A direction is: parent -> children
• Leaf node: Node that has no children

Which of the following is/are a tree?

A. B.

C.

D. A & B

E. All of A-C

!13

Binary Search Tree – What is it?

42

32

12

45

41 50

!14

Do the keys have to be integers?

• Each node:
• stores a key (k)
• has a pointer to left child, right child

and parent (optional)
• Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree <= Node’s key
Node’s key < Keys in node’s right subtree

Which of the following is/are a binary search tree?

42

32

12

42

3212

42

3212 65

30 38

A. B.

42

32

12

56

45

D.

C.

E. More than one of these

BSTs allow efficient search!

42

32

12

45

41 50

!16

• Start at the root;
• Trace down a path by comparing k with the key of the

current node x:
• If the keys are equal: we have found the key

• If k < key[x] search in the left subtree of x

• If k > key[x] search in the right subtree of x

Search for 41, then search for 53

