BINARY SEARCH TREES

Problem Solving with Computers-II C ' '
" aostc‘: a:d:
‘w:nl: nane®” A"
y © ma‘xﬂ“..\\:{za gace®®®”

A tree has following general properties:

* One node is distinguished as a root;

» Every node (exclude a root) is connected
by a directed edge from exactly one other
node;

A direction is: parent -> children
* Leaf node: Node that has no children

&C%x

@__j @_’“@’)@4@ Linensr

No\e

Lﬁta} nodes

Which of the following is/are a tree”?

A @
C&'hjle nodd WQQB

g“ﬂa{j TYCQ

B.
/l;,@e w‘(\e('c.

e\fcn’ nods

can howe
ot Moy tus2

D.A&B i d fen

C.

%S E Al of A-C
o P47, qooP
mot

Binary Search Trees O/ \

* What are the operations supported? -
ans Operalitns Q3 Lintiedlst O oMey C.{

Sovr+ed arcay }Qﬂ— (nsect 8 delefe .

- What are the running times of these operations?

Boaild jnhuhiow — formeelize anplexily

- How do you implement the BST i.e. operations supported by it?

e
Operations supported by Sorted arrays and Binary Search Trees (BST)

Si(f‘;fa rz\@)\s \nlle Zﬂ
Operations 2 o El now S

Min R v

Max . PP IR \ro.hu)
Successor > ﬂivfu‘:‘a oV ma(”(c;lsw di’
Predecessor £

Search : aftrods -
Insert > stowel 1n SOT e K
Delete g

Print elements in order

Binary Search Tree — What is it? /@
A9 | U

Do the keys have to be integers?

« Eachnode: @&

D)

stores a key (k)

has a pointer to left child, right child
and parent (optional)

Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree <= Node’s key
Node’s key < Keys in node’s right subtree

& . ®

Which of the following is/are a binary search tree?
K 2 &@12»

BSTs allow efficient search!
f
Start at the root;

@ * Trace down a path by comparing k with the key of the
current node x:

@ e - If the keys are equal: we have found the key
\

- If k <key[x] search in the left subtree of x
G ” @ - If k> key[x] search in the right subtree of x
alent class Noda §
ubhc :
. N e 2 P nt JO«"C\
/
Vol [| & & Nod # \e@

@., Search fafr 41, th h for 53 Nods 3 ﬁﬁ&’
earc @ en searc or > % Nw > P(}f@\‘}’

I
Anode inaBST

class BSTNode {

public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;

BSTNode(const int & d) : data(d) {
left = right = parent = @ V\MQPN}
}
};

Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

Traversing down the tree

+ Suppose n is a pointer to the root. What is the output
of the following code:

—

n = n->left;

n = n->right;

Lcout<<n—>data<<endl ;
A. 42
B. 32

12

(h

E. Segfault

Traversing up the tree

* Suppose n is a pointer to the node with value 50.

+ What is the output of the following code:
n = n->parent;
n = n->parent;
n = n->left;

cout<<n->data<<endl;

A% wmtelweoe)

C. 12 Tz T l{é"/
D. 45
E. Segfault

*Insert 40
- Search for the key
-Insert at the spot you expected to find it

Max

Goal: find the maximum key value in a BST

Following right child pointers from the root, until a
leaf node 1s encountered. The least node has the max
value

Alg: int BST: :max ()

14@ ej) Zru»:ja (LB/LJ— .

Maximum = 20

Min

Goal: find the minimum key value in a BST
Start at the root.

Follow \% ¥ child pointers from the root, until a
leaf node is eticountered

Leaf node has the min key value

Alg: int BST: :min ()

eap g

In order traversal: print elements in sorted orde

(&K —
e Algorithm Inorder(tree)
) 1. Traverse the left subtree, i.e., call Inorder(left-subtree)
a 2. Visit the root. &~ p (' nt Hu foot
A— 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

@TO (2) @) Taorder (Noda 3

Pre-order traversal: nice way to linearize your tree!

e Algorithm Preorder(tree)
1. Visit the root.
@ e 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Post-order traversal: use in recursive destructors!

e Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
@ 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
e 3. Visit the root.

Predecessor: Next smallest element
e - What is the predecessor of 327

* What is the predecessor of 457

Successor: Next largest element

e - What is the successor of 45?
- What is the successor of 507?

@ @ - What is the successor of 607?

Delete: Case 1

e Case 1: Node is a leaf node
+ Set parent’s (left/right) child pointer to null

a @ * Delete the node

® o6 ®

Delete: Case 2

e Case 2 Node has only one child
* Replace the node by its only child

Delete: Case 3
e Case 3 Node has two children

+ Can we still replace the node by one of its

a @ children? Why or Why not?

® o6 ®

