
 
BINARY SEARCH TREES

Problem Solving with Computers-II

Trees
!2

 A tree has following general properties:
 • One node is distinguished as a root;
 • Every node (exclude a root) is connected

by a directed edge from exactly one other
node;

 A direction is: parent -> children
• Leaf node: Node that has no children

Nodes

2 is the
root

parent zey
data

n O z'schildren
7,5

Node

Leaf nodes
X

LinearNode

Which of the following is/are a tree?

A. B.

C.

D. A & B

E. All of A-C

!3

Binary Tree

Singlenode tree Tree where
every node
can have
at most two

childrendo
not a

tree
thereis
a loop

Binary Search Trees
• What are the operations supported?

• What are the running times of these operations?

• How do you implement the BST i.e. operations supported by it?

!4

O
66

Same operations as lialecdeist or array I
Sorted array fast insert delete O 0

Build intuition formalize complexity
next weed

Operations supported by Sorted arrays and Binary Search Trees (BST)

Operations
Min
Max
Successor
Predecessor
Search
Insert
Delete
Print elements in order

soarrteady 12 015 11116223I 3 4 5

Ifk
given a value or index of a value

find the next largest value

Slower in sorted arrays

Binary Search Tree – What is it?

42

32

12

45

41 50

!6

Do the keys have to be integers?

• Each node:
• stores a key (k)
• has a pointer to left child, right child

and parent (optional)
• Satisfies the Search Tree Property

For any node,
Keys in node’s left subtree <= Node’s key
Node’s key < Keys in node’s right subtree

egg
child 842 450

efts

eeq
42

Which of the following is/are a binary search tree?

42

32

12

42

3212

42

3212 65

30 38

A. B.

42

32

12

56

45

D.

C.

E. More than one of these

x x diddreen

32 U2
but its in
42 s right
subtree

0
x

BSTs allow efficient search!

42

32

12

45

41 50

!8

• Start at the root;
• Trace down a path by comparing k with the key of the

current node x:
• If the keys are equal: we have found the key

• If k < key[x] search in the left subtree of x

• If k > key[x] search in the right subtree of x

Search for 41, then search for 53

sea
4

qparent class Node

Value if riga
Publicnt data
Nodes left
Nodes right
Node parent

class BSTNode {

public:
 BSTNode* left;
 BSTNode* right;
 BSTNode* parent;
 int const data;

 BSTNode(const int & d) : data(d) {
 left = right = parent = 0;
 }
};

!9

A node in a BST

O e 3

peace
null ptr

Define the BST ADT

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements in order

42

32

12

45

41 50

Best

If
0

Heap

Traversing down the tree

42

32

12

45

41 50

• Suppose n is a pointer to the root. What is the output
of the following code:

n = n->left;
n = n->right;

cout<<n->data<<endl;
A. 42
B. 32
C. 12
D. 41
E. Segfault

Heap

N

d

we

bn

Traversing up the tree

42

32

12

45

41 50

• Suppose n is a pointer to the node with value 50.
• What is the output of the following code:

n = n->parent;
n = n->parent;

n = n->left;
cout<<n->data<<endl;

A. 42
B. 32
C. 12
D. 45
E. Segfault

r

Lan
n

SH h n

s n

0 whileCreer left 4 f
re r left

!13

Insert
• Insert 40
• Search for the key
• Insert at the spot you expected to find it

42

32

12

45

41 50

r
f 407

H
g

We expect tofind40 in the left
subtreeof4

!14

3

2 4

6

7

13

15

18

17 20

9

Maximum = 20

Max
Goal: find the maximum key value in a BST
Following right child pointers from the root, until a
leaf node is encountered. The least node has the max
value

Alg: int BST::max() 24
Node N root

WhiteCn I n right
n ntright

return my

2

!15

3

2 4

6

7

13

15

18

17

9

Min = ?

Min
Goal: find the minimum key value in a BST
Start at the root.
Follow ________ child pointers from the root, until a
leaf node is encountered
Leaf node has the min key value

Alg: int BST::min() 18

t

left f
d

se 6

Similar to max

!16

In order traversal: print elements in sorted order

42

32

12

45

41 50

Algorithm Inorder(tree)
 1. Traverse the left subtree, i.e., call Inorder(left-subtree)
 2. Visit the root.
 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

oof
r pointer to the root of a BST

print the root

Void In Order Node r

12324142455 If fr return

Inorder Gr
3 left

coutu r data
In Order Es right

!17

Pre-order traversal: nice way to linearize your tree!

42

32

12

45

41 50

Algorithm Preorder(tree)
 1. Visit the root.
 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

r I
s

voioB.EE
1rregrogreEurnnode.r's

232 12 41 4550 Coutu r dgtakendl
preorder r left

preorder on
Preorderm preorder Lr right

leftsubtree rightsubtree

of42 942 2

!18

Post-order traversal: use in recursive destructors!

42

32

12

45

41 50

Algorithm Postorder(tree)
 1. Traverse the left subtree, i.e., call Postorder(left-subtree)
 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
 3. Visit the root.

See the last
slide

void BST PostOrder Node r

ifc r return

A 12 32 41 4550 42 postoeder Cr left
Postolder Cr 3 right3

B 12 41 32 45 50 42 coat cc r data

12 41 32 50 45
42
g

!19

Predecessor: Next smallest element
42

32

23

45
20

50

• What is the predecessor of 32?
• What is the predecessor of 45?

y

Node BST Predecessor Node n

ifCn left
Apredecessorof n is in its left

subtree

kreturn thenode with
Max keyinn'sleft

I use is n on ano.wno
A 142

key is smaller
than the keyofn

32 Node t n Parenti
White t I t data

data

te c parent1 3
return ti

Case I n has a left subtree possibly also a tightsubtree
and cIs the left child of its parent

Using the propertyof BST42

532 keyed6 keyCn keyGrekkegCp

From the above inequality the1 predecessorof n has to be
in its

leftsubtree rightsubtree left subtree Te and not inTRAP
ofn ogn

Case 2 n has a left subtree Te possibly arightsubtreect

and n is the right child of its parent

keyCp key CI Kegan keyer

In this case again thepredcn
which is the next smallest node

should be in TL

!20

Successor: Next largest element
42

32

23

4520

50

• What is the successor of 45?
• What is the successor of 50?
• What is the successor of 60?

48

80

70

60

90

Similar topredecessor

!21

Delete: Case 1
Case 1: Node is a leaf node

• Set parent’s (left/right) child pointer to null
• Delete the node

42

32

23

4520

50

48

80

70

60

90

if left ee
n i right

11 leaf node
if Cnt parents left

n

Msparent leftanally
else

n parat right WPn
deteten

!22

Delete: Case 2
Case 2 Node has only one child

• Replace the node by its only child
42

32

23

4520

50

48

80

70

60

90

of

!23

Delete: Case 3
Case 3 Node has two children
• Can we still replace the node by one of its

children? Why or Why not?

42

32

23

4520

50

48

80

70

60

90

n
dno

Swap the keyof the node
with

that ofits predecessor Corsuccessor

5 Delete the node that has the

key value
We know that this node

has only one child so the

deletion defaults
to one of the

previous two easier cases

1

Recursive destructor using post order traversal

BST a BST

delete root

Node in Node C

delete left's Recursive deletion

delet right using postorder
traversal

these lines call the
destructor ofNode

In class we discussed different variations

and incorrect versions that lead to memory

leaks a segfaults

