BINARY SEARCH TREES

Problem Solving with Computers-II

C++

include <1ostre stdi
using
inclu namespac
unt main()l Facebook "
cout<<"Hola
ceturn :
1

Which of the following is/are a tree?
Binary Tree
A.
A. Single node tree)

Tree where every node can have
C. at most two
D. A \& B children
E. All of $\mathrm{A}-\mathrm{C}$

Binary Search Trees

- What are the operations supported?

Same operations as lindedes os array:

Sorted array + fast insert \& delefe.

- What are the running times of these operations?

Build intuition \longrightarrow formalize complexity next weeks.

- How do you implement the BST i.e. operations supported by it?

Operations supported by Sorted arrays and Binary Search Trees (BST)

Which of the following is/are a binary search tree?

D. but its in
 42 's right subire?
E. More than one of these

BSTs allow efficient search!

- Start at the root;
- Trace down a path by comparing \mathbf{k} with the key of the current node x:
- If the keys are equal: we have found the key
- If $\mathbf{k}<\operatorname{key}[\mathrm{x}]$ search in the left subtree of x
- If $\mathbf{k}>\operatorname{key}[\mathrm{x}]$ search in the right subtree of x
 Class Node ξ public: int data; Node left; Nodes right:

A node in a BST

class BSTNode \{
public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;
BSTNode(const int \& d) : data(d) \{
left $=$ right $=$ parent $=0$ nullphis
\}
\};

Define the BST ADT

BST

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements in order

Traversing down the tree

- Suppose n is a pointer to the root. What is the output of the following code:
$\left[\begin{array}{l}\mathrm{n}=\mathrm{n}->\text { left } ; \\ \mathrm{n}=\mathrm{n}->\text { right } ;\end{array}\right.$
cout<<n->data<<endl;
A. 42
B. 32
(D. ${ }^{12}$

E. Segfault

Traversing up the tree

- Suppose n is a pointer to the node with value 50 .
- What is the output of the following code:
$\mathrm{n}=\mathrm{n}->$ parent;
n = n->parent;
$\mathrm{n}=\mathrm{n}->\mathrm{left}$;
cout<<n->data<<endl;
A. 42
B. 32
C. 12

$$
\begin{aligned}
\text { while }(r s s r & \rightarrow \text { left }) \\
r=r & \rightarrow \text { left; }
\end{aligned}
$$

D. 45
E. Segfault

- Insert 40
- Search for the key (40)
- Insert at the spot you expected to find it
(12) 40

We expect 70 find 40 in the left subtree of 41

Max

Goal: find the maximum key value in a BST
Following right child pointers from the root, until a leaf node is encountered. The least node has the max value

Alg: int BST: :max ()

$$
\text { Node } * n=\text { root; }
$$

$$
\text { While (} n \text { s\& } n \rightarrow \text { right) }
$$

$$
n=n \rightarrow r i g h t ;
$$

return n;

Maximum $=20$

Min

Goal: find the minimum key value in a BST Start at the root.
Follow left child pointers from the root, until a leaf node is encountered
Leaf node has the min key value

Alg: int BST: :min()
Similar to max

Min $=$?

In order traversal: print elements in sorted order

Pre-order traversal: nice way to linearize your tree!

Post-order traversal: use in recursive destructors!
(See the last
 slide)

1. Traverse the left subtree, ie., call Postorder(left-subtree)
2. Traverse the right subtree, i.e., call Postorder(right-subtree)
3. Visit the root.

Void BST:r Postorder (Node r) $\}$ if $(!r)$ return;
Postorder ($r \rightarrow$ left);
Postorder ($r \rightarrow$ right);
cont << $\gamma \rightarrow$ data;

Predecessor: Next smallest element

-What is the predecessor of 32 ?
-What is the predecessor of 45?
Node * BST:: Predecessor (Node * n) $\{$ if $(n \rightarrow$ left $)\}$
/" predecessor of n is in its left subtree " return the node with max key in n'sleft // subtree
\}else \{
"Io up the tree until you find a node whose
key is smaller than the key oo Node $x t=n \rightarrow$ parent; while (t \& $8 t \rightarrow$ data $>=n \rightarrow$ data)
\} $t=t \rightarrow$ parent;
3 return t;

Case 1: n has a left subtree(T) (possibly also a night subtree)
 using the property of BST

$$
\operatorname{key}\left(T_{L}\right)<\operatorname{key}(n)<\operatorname{key}\left(T_{R}\right)<\operatorname{key}(p)
$$

From the above inequality the predecessor of n has to be in its eft subtree (T_{L}) and not in Thorp

Case 2: n has a left subtree (T_{L}), possibly a right subbree (T_{R}) and n is the right child of its parent

$$
\operatorname{key}(p)<\operatorname{key}\left(T_{L}\right)<\operatorname{key}(n)<\operatorname{key}\left(T_{R}\right)
$$

In this case again the $\operatorname{pred}(n)$ which is the mut smallest node should bee in T_{L}

Successor: Next largest element

-What is the successor of 45 ?
-What is the successor of 50 ?
-What is the successor of 60 ?

Similar to predeccess

Delete: Case 1

Delete: Case 2

Case 2 Node has only one child

- Replace the node by its only child

Delete: Case 3

Case 3 Node has two children

- Can we still replace the node by one of its children? Why or Why not?
Swap the key of the node with that z its predecessor (orsuccersor)
Delete the node that has the ply value
Che know that this node has only one child so the deletion defaults to one 8 the previon two (easier) cases.

Recursive destructor using post order traversal
MST : : \sim MST () $\}$
delete root;
\}
Node:: \sim Node () $\}$
delete left, $\} \leftarrow$ Recursive deletion
delet right, $\}$ using post order traversal these lines call, the destructor of Node
3
In class we discussed different variations and incorrect versions that lead to memory leaks Δ segfaults

