
RUNNING TIME ANALYSIS - PART 2 
BINARY SEARCH TREES RUNNING TIME 

Problem Solving with Computers-II



Midterm – Tuesday 5/19
• Cumulative but the focus will be on  

•  BST 
•  Running time analysis 



Formal definition of Big-O
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = O(g) if there is a constant 
c > 0  and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g) 
means that “f grows no faster than g”



Big-Omega
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = Ω(g) if there are constants 
c > 0, k>0 such that c · g(n) ≤ f(n) 
for n >=  k

f = Ω(g)
means that “f grows at least as fast as g”



Big-Theta
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = Θ(g) if there are constants 
c1, c2 , k such that 0 ≤ c1g(n) ≤ f(n) ≤ 
c2g(n), for n >=k

Running time

Problem Size (n)





Orders of growth
• We are interested in how 

algorithm running time scales 
with input size 

• Big-Oh notation allows us to 
express that by ignoring the 
details 

• 20n hours v. n2 microseconds:  
• which has a higher order of 

growth? 

• Which one is better?



Running Time Complexity

/* N is the length of the array*/ 
int sumArray(int arr[], int N) 
{   
       int result=0;   
       for(int i=0; i < N; i++)     
              result+=arr[i];   
       return result; 
}

Start by counting the primitive operations



Big-O notation

N Steps = 5*N +3
1 8
10 53
1000 5003
100000 500003
10000000 50000003

• Simplification 1: Count steps instead of absolute time 

• Simplification 2: Ignore lower order terms 
• Does the constant 3 matter as N gets large?  

• Simplification 3: Ignore constant coefficients in the 
leading term (5*N) simplified to N 

After the simplifications,  

The number of steps grows linearly in N 
Running Time = O(N) pronounced “Big-Oh of N”



Big-O  lets us focus on the big picture
Recall our goals: 
• Focus on the impact of the algorithm 

• Focus on asymptotic behavior (running time as N gets large) 



Given the step counts for different algorithms, express the 
running time complexity using Big-O

1. 10000000  
2. 3*N      
3. 6*N-2      
4. 15*N + 44 
5. 50*N*logN 
6. N2     
7. N2-6N+9   
8. 3N2+4*log(N)+1000

For polynomials, use only leading term, ignore coefficients: linear, quadratic



Common sense rules of Big-O
1. Multiplicative constants can be omitted: 14n2 becomes n2 .  

2. na dominates nb if a > b: for instance, n2 dominates n.  

3. Any exponential dominates any polynomial: 3n dominates n5 (it even 
dominates 2n ).



What is the Big O of sumArray2

/* N is the length of the array*/ 
int sumArray2(int arr[], int N) 
{   
       int result=0;   
       for(int i=0; i < N; i=i+2)     
              result+=arr[i];   
       return result; 
}

A. O(N2) 

B. O(N) 
C. O(N/2) 
D. O(log N) 

E. None of the array



What is the Big O of sumArray2
/* N is the length of the array*/ 
int sumArray2(int arr[], int N) 
{   
       int result=0;   
       for(int i=1; i < N; i=i*2)     
              result+=arr[i];   
       return result; 
}

A. O(N2) 

B. O(N) 
C. O(N/2) 
D. O(log N) 

E. None of the array



What is the Big-O running time of algoX?
• Assume dataA is some data structure that contains M keys. 
• Given: running time of operations for dataA: 

• insert: O(log M)  
• min: O(1) 
• delete: O(log M) 

void algoX(int arr[], int N) 
{   
       dataA ds;//ds contains no keys   
       for(int i=0; i < N; i=i++)     
              ds.insert(arr[i]); 
       for(int i=0; i < N; i=i++){     
              arr[i] = ds.min(); 
              ds.delete(arr[i]); 
       }  
}

A. O(N2) 
B. O(N logN) 
C. O(N) 
D. O(log N) 
E. Not enough information to 

compute



Best case, worst case, average case running times

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

Operations on sorted arrays 
• Min :  
• Max:  
• Median:  
• Successor:  
• Predecessor:  
• Search: 
• Insert :  
• Delete:



Worst case analysis of binary search
17

bool binarySearch(int arr[], int element, int N){  
//Precondition: input array arr is sorted in ascending order 
  int begin = 0; 
  int end = N-1; 
  int mid; 
  while (begin <=  end){ 
    mid = (end + begin)/2; 
    if(arr[mid]==element){ 
      return true; 
    }else if (arr[mid]< element){ 
      begin = mid + 1;     
    }else{ 
      end = mid - 1; 
     
    }    
  } 
  return false; 
}



Binary Search Trees
• WHAT are the operations supported? 

• HOW do we implement them? 

• WHAT are the (worst case) running times of each operation? 

18



Height of the tree

19

BSTs of different heights are possible with the same set of keys 
Examples for keys: 12, 32, 41, 42, 45

• Path – a sequence of nodes and edges connecting a node with a descendant. 
• A path starts from a node and ends at another node or a leaf 
• Height of node – The height of a node is the number of edges on the longest 

downward path between that node and a leaf.
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Worst case Big-O of search
• Given a BST of height H with N nodes, 
what is the worst case complexity of 
searching for a key? 

A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)

42

32

12

45

41 50
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Worst case Big-O of insert
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of inserting a key? 

A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)

42

32

12

45

41 50
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Worst case Big-O of min/max
• Given a BST of height H and N nodes, 
what is the worst case complexity of 
finding the minimum or maximum key? 

A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)

42

32

12

45

41 50
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Worst case Big-O of predecessor/successor

• Given a BST of height H and N nodes, 
what is the worst case complexity of 
finding the predecessor or successor key? 

A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)

42

32

12

45

41 50
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Worst case Big-O of delete
• Given a BST of height H and N 
nodes, what is the worst case 
complexity of deleting the key 
(assume no duplicates)? 

A. O(1) 
B. O(log H) 
C. O(H) 
D. O(H*log H) 
E. O(N)

42

32

12

45

41 50



Worst case analysis
Are binary search trees really faster than linked lists for finding elements? 
• A. Yes 
• B. No

data:
next:

1 data:
next:

2 data:
next:

3
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Completely filled binary tree

26

Nodes at each level have exactly two children, 
except  the nodes at the last level

42

32

12

45

41 5043

Level 0

Level 1

Level 2



Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
How many nodes are on level L in a completely filled binary search tree? 
A.2 
B.L 
C.2*L 
D.2L
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Relating H (height) and N (#nodes) 
find is O(H), we want to find a f(N) = H

Level 0

Level 1

Level 2

……
Finally, what is the height (exactly) of the tree in terms of N?

28



Balanced trees
• Balanced trees by definition have a height of O(log N) 
• A completely filled tree is one example of a balanced tree 
• Other Balanced BSTs include AVL trees, red black trees and so on 
• Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst


30

Big O of traversals

In Order: 
Pre Order: 
Post Order:

42

32

12

45

41 50



Summary of operations
Operation Sorted Array Binary Search Tree Linked List

Min
Max
Median
Successor
Predecessor
Search
Insert
Delete


