RUNNING TIME ANALYSIS - PART 2 BINARY SEARCH TREES RUNNING TIME

Problem Solving with Computers-II

Midterm – Tuesday 5/19

- Cumulative but the focus will be on
 - BST
 - Running time analysis

Formal definition of Big-O

- f(n) and g(n): running times of two algorithms on inputs of size n.
- f(n) and g(n) map positive integer inputs to positive reals.

n

Big-Omega

- f(n) and g(n): running times of two algorithms on inputs of size n.
- f(n) and g(n) map positive integer inputs to positive reals.

We say $f = \Omega(g)$ if there are constants c > 0, k>0 such that $c \cdot g(n) \le f(n)$ for $n \ge k$

 $f = \Omega(g)$ means that "f grows at least as fast as g"

Big-Theta

- f(n) and g(n): running times of two algorithms on inputs of size n.
- f(n) and g(n) map positive integer inputs to positive reals.

```
We say f = \Theta(g) if there are constants
c_1, c_{2,k} such that 0 \le c_1 g(n) \le f(n) \le c_2 g(n), for n \ge k
```


Problem Size (n)

What takes so long? Let's unravel the recursion...

The same subproblems get solved over and over again!

Orders of growth

- We are interested in how algorithm running time scales with input size
- Big-Oh notation allows us to express that by ignoring the details
- 20n hours v. n² microseconds:
 - which has a higher order of growth?
 - Which one is better?

Running Time Complexity

Start by counting the primitive operations

```
/* N is the length of the array*/
int sumArray(int arr[], int N)
{
    int result=0;
    for(int i=0; i < N; i++)
        result+=arr[i];
    return result;</pre>
```

Big-O notation

Ν	Steps = 5*N +3
1	8
10	53
1000	5003
100000	500003
1000000	5000003

- Simplification 1: Count steps instead of absolute time
- Simplification 2: Ignore lower order terms
 Does the constant 3 matter as N gets large?
- Simplification 3: Ignore constant coefficients in the leading term (5*N) simplified to N

After the simplifications,

The number of steps grows linearly in N Running Time = O(N) pronounced "Big-Oh of N"

Big-O lets us focus on the big picture

Recall our goals:

- Focus on the impact of the algorithm
- Focus on asymptotic behavior (running time as N gets large)

Given the step counts for different algorithms, express the running time complexity using Big-O

- 1. 1000000
- 2.3*N
- 3. 6*****N-2
- 4.15*N + 44
- 5.50*N*logN
- 6. N²
- 7. $N^2 6N + 9$
- 8. $3N^2 + 4 \times \log(N) + 1000$

For polynomials, use only leading term, ignore coefficients: linear, quadratic

Common sense rules of Big-O

1. Multiplicative constants can be omitted: $14n^2$ becomes n^2 .

2. n^a dominates n^b if a > b: for instance, n^2 dominates n.

3. Any exponential dominates any polynomial: 3ⁿ dominates n⁵ (it even dominates 2ⁿ).

What is the Big O of sumArray2

A. O(N²)
B. O(N)
C. O(N/2)
D. O(log N)
E. None of the array

/* N is the length of the array*/
int sumArray2(int arr[], int N)
{
 int result=0;
 for(int i=0; i < N; i=i+2)
 result+=arr[i];
 return result;
}</pre>

What is the Big O of sumArray2

A. $O(N^2)$ B. O(N)

- C. O(N/2)
- D. O(log N)

E. None of the array

/* N is the length of the array*/
int sumArray2(int arr[], int N)

What is the Big-O running time of algoX?

- Assume dataA is some data structure that contains M keys.
- Given: running time of operations for dataA:
 - insert: O(log M)
 - min: O(1)
 - delete: O(log M)

- A. $O(N^2)$
- B. O(N logN)
- C. O(N)
- D. O(log N)
- E. Not enough information to compute

Best case, worst case, average case running times

Operations on sorted arrays

- Min :
- Max:
- Median:
- Successor:
- Predecessor:
- Search:
- Insert :
- Delete:

6	13	14	25	33	43	51	53	64	72	84	93	95	96	97
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Î														
Ιο														hi

Worst case analysis of binary search

```
bool binarySearch(int arr[], int element, int N){
//Precondition: input array arr is sorted in ascending order
  int begin = 0;
  int end = N-1;
  int mid;
  while (begin <= end){</pre>
    mid = (end + begin)/2;
    if(arr[mid]==element){
      return true;
    }else if (arr[mid] < element){</pre>
      begin = mid + 1;
    }else{
      end = mid -1;
    }
  }
  return false;
}
```

Binary Search Trees

- WHAT are the operations supported?
- HOW do we implement them?
- WHAT are the (worst case) running times of each operation?

Height of the tree

- Path a sequence of nodes and edges connecting a node with a descendant.
- A path starts from a node and ends at another node or a leaf
- Height of node The height of a node is the number of edges on the longest downward path between that node and a leaf.

BSTs of different heights are possible with the same set of keys Examples for keys: 12, 32, 41, 42, 45

Worst case Big-O of search

- Given a BST of height H with N nodes, what is the worst case complexity of searching for a key?
- A. O(1)
- B. O(log H)
- C. O(H)
- D. O(H*log H)
- E. O(N)

Worst case Big-O of insert

- Given a BST of height H and N nodes, what is the worst case complexity of inserting a key?
 A. O(1)
 B. O(log H)
- C. O(H)
- D. O(H*log H)
- E. O(N)

Worst case Big-O of min/max

- Given a BST of height H and N nodes, what is the worst case complexity of finding the minimum or maximum key?
- A. O(1)B. O(log H)
- C. O(H)
- D. O(H*log H)
- E. O(N)

Worst case Big-O of predecessor/successor

- Given a BST of height H and N nodes, what is the worst case complexity of finding the predecessor or successor key?
 A. O(1)
 B. O(log H)
 C. O(H)
- D. O(H*log H)
- E. O(N)

Worst case Big-O of delete

- Given a BST of height H and N nodes, what is the worst case complexity of deleting the key (assume no duplicates)?
- A. O(1)
- B. O(log H)
- C. O(H)
- D. O(H*log H)

E. O(N)

Worst case analysis

Are binary search trees *really* faster than linked lists for finding elements?

- A. Yes
- B. No

Completely filled binary tree

Nodes at each level have exactly two children, except the nodes at the last level

Relating H (height) and N (#nodes) find is O(H), we want to find a f(N) = H

How many nodes are on level L in a completely filled binary search tree? A.2 B.L C.2*L D.2^L

Relating H (height) and N (#nodes) find is O(H), we want to find a f(N) = H

Finally, what is the height (exactly) of the tree in terms of N?

Balanced trees

- Balanced trees by definition have a height of O(log N)
- A completely filled tree is one example of a balanced tree
- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: <u>https://visualgo.net/bn/bst</u>

Big O of traversals

In Order: Pre Order: Post Order:

Summary of operations

Operation	Sorted Array	Binary Search Tree	Linked List
Min			
Max			
Median			
Successor			
Predecessor			
Search			
Insert			
Delete			