RUNNING TIME ANALYSIS - PART 2 BINARY SEARCH TREES RUNNING TIME

Problem Solving with Computers-II
include namespace stdi

Midterm - Tuesday 5/19

- Cumulative but the focus will be on
- BST
- Running time analysis

Formal definition of Big-O

- $f(n)$ and $g(n)$: running times of two algorithms on inputs of size n.
- $f(n)$ and $g(n)$ map positive integer inputs to positive reals.

We say $\mathrm{f}=\mathrm{O}(\mathrm{g})$ if there is a constant $\mathrm{c}>0$ and $\mathrm{k}>0$ such that $f(n) \leq c \cdot g(n)$ for all $n>=k$.
$\mathrm{f}=\mathrm{O}(\mathrm{g})$
means that " f grows no faster than g "

Big-Omega

- $f(n)$ and $g(n)$: running times of two algorithms on inputs of size n.
- $f(n)$ and $g(n)$ map positive integer inputs to positive reals.

We say $\mathrm{f}=\Omega(\mathrm{g})$ if there are constants $\mathrm{c}>0, \mathrm{k}>0$ such that $\mathrm{c} \cdot \mathrm{g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})$ for $\mathrm{n}>=\mathrm{k}$
$\mathrm{f}=\Omega(\mathrm{g})$
means that " f grows at least as fast as g "

Big-Theta

- $f(n)$ and $g(n)$: running times of two algorithms on inputs of size n.
- $f(n)$ and $g(n)$ map positive integer inputs to positive reals.

We say $\mathrm{f}=\Theta(\mathrm{g})$ if there are constants
$c_{1}, c_{2, k}$ such that $0 \leq c_{1} g(n) \leq f(n) \leq$
$c_{2} g(n)$, for $n>=k$

Problem Size (n)

What takes so long? Let's unravel the recursion...

The same subproblems get solved over and over again!

Orders of growth

- We are interested in how algorithm running time scales with input size
- Big-Oh notation allows us to express that by ignoring the details
- 20n hours v. n^{2} microseconds:
- which has a higher order of growth?
- Which one is better?

Running Time Complexity

Start by counting the primitive operations
/* N is the length of the array*/ int sumArray(int arr[], int N)
\{
int result=0;
for (int $i=0 ; i<N ; i++)$ result+=arr[i];
return result;
\}

Big-O notation

N	Steps $=5^{*} \mathrm{~N}+3$
1	8
10	53
1000	5003
100000	500003
10000000	50000003

- Simplification 1: Count steps instead of absolute time
- Simplification 2: Ignore lower order terms
- Does the constant 3 matter as N gets large?
- Simplification 3: Ignore constant coefficients in the leading term $\left(5^{*} N\right)$ simplified to N

After the simplifications,
The number of steps grows linearly in N Running Time $=\mathbf{O}(\mathbf{N})$ pronounced "Big-Oh of N"

Big-O lets us focus on the big picture

Recall our goals:

- Focus on the impact of the algorithm
- Focus on asymptotic behavior (running time as \mathbf{N} gets large)

Given the step counts for different algorithms, express the running time complexity using Big-O

```
1.10000000
2. 3*N
3. 6*N-2
4.15*N + 44
5.50*N*logN
6. N}\mp@subsup{}{}{2
7. N2-6N+9
8. 3N2+4*log(N)+1000
```

For polynomials, use only leading term, ignore coefficients: linear, quadratic

Common sense rules of Big-O

1. Multiplicative constants can be omitted: $14 n^{2}$ becomes n^{2}.
2. n^{a} dominates n^{b} if $a>b$: for instance, n^{2} dominates n.
3. Any exponential dominates any polynomial: 3^{n} dominates n^{5} (it even dominates 2^{n}).

What is the Big O of sumArray2

A. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
B. $\mathrm{O}(\mathrm{N})$
c. $\mathrm{O}(\mathrm{N} / 2)$
D. $\mathrm{O}(\log \mathrm{N})$
E. None of the array
/* N is the length of the array*/ int sumArray 2 (int arr[], int N)
\{
int result=0;
for (int $i=0 ; i<N ; i=i+2)$ result+=arr[i];
return result;
\}

What is the Big O of sumArray2

/* N is the length of the array*/
A. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{N} / 2)$
D. $\mathrm{O}(\log \mathrm{N})$
E. None of the array int sumArray2(int arr[], int N)
\{
int result=0;
for (int $i=1 ; i<N ; i=i * 2)$ result+=arr[i];
return result;

\}

What is the Big-O running time of algoX?

- Assume dataA is some data structure that contains M keys.
- Given: running time of operations for dataA:
- insert: O(log M)
- min: O(1)
- delete: O(log M)
void algoX(int arr[], int N)
\{
dataA ds;//ds contains no keys for (int i=0; i < N; i=i++)
ds.insert(arr[i]);
for (int i=0; i < N; i=i++) \{
arr[i] $=$ ds.min(); ds.delete(arr[i]);
\}
\}
A. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
B. $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
C. $\mathrm{O}(\mathrm{N})$
D. $\mathrm{O}(\log \mathrm{N})$
E. Not enough information to compute

Best case, worst case, average case running times

Operations on sorted arrays

- Min :
- Max:
- Median:
- Successor:
- Predecessor:
- Search:
- Insert :
- Delete:

6	13	14	25	33	43	51	53	64	72	84	93	95	96	97
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\mid														।
lo														

Worst case analysis of binary search

```
bool binarySearch(int arr[], int element, int N){
//Precondition: input array arr is sorted in ascending order
    int begin = 0;
    int end = N-1;
    int mid;
    while (begin <= end){
        mid = (end + begin)/2;
        if(arr[mid]==element){
            return true;
        }else if (arr[mid]< element){
            begin = mid + 1;
        }else{
            end = mid - 1;
        }
    }
    return false;
}
```


Binary Search Trees

- WHAT are the operations supported?
- HOW do we implement them?
- WHAT are the (worst case) running times of each operation?

Height of the tree

- Path - a sequence of nodes and edges connecting a node with a descendant.
- A path starts from a node and ends at another node or a leaf
- Height of node - The height of a node is the number of edges on the longest downward path between that node and a leaf.

BSTs of different heights are possible with the same set of keys Examples for keys: 12, 32, 41, 42, 45

Worst case Big-O of search

- Given a BST of height H with N nodes, what is the worst case complexity of searching for a key?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
C. $\mathrm{O}(\mathrm{H})$
D. $\mathrm{O}\left(\mathrm{H}^{*} \log \mathrm{H}\right)$
E. $\mathrm{O}(\mathrm{N})$

Worst case Big-O of insert

- Given a BST of height H and N nodes, what is the worst case complexity of inserting a key?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
C. $\mathrm{O}(\mathrm{H})$
D. $\mathrm{O}\left(\mathrm{H}^{*} \log \mathrm{H}\right)$
E. O(N)

Worst case Big-O of min/max

- Given a BST of height H and N nodes, what is the worst case complexity of finding the minimum or maximum key?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
C. $\mathrm{O}(\mathrm{H})$
D. $\mathrm{O}\left(\mathrm{H}^{*} \log \mathrm{H}\right)$
E. $\mathrm{O}(\mathrm{N})$

Worst case Big-O of predecessor/successor

- Given a BST of height H and N nodes, what is the worst case complexity of finding the predecessor or successor key?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
C. $\mathrm{O}(\mathrm{H})$
D. $\mathrm{O}\left(\mathrm{H}^{*} \log \mathrm{H}\right)$
E. O(N)

Worst case Big-O of delete

- Given a BST of height H and N nodes, what is the worst case complexity of deleting the key (assume no duplicates)?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\log \mathrm{H})$
C. $\mathrm{O}(\mathrm{H})$
D. $\mathrm{O}\left(\mathrm{H}^{*} \log \mathrm{H}\right)$
E. O(N)

Worst case analysis

Are binary search trees really faster than linked lists for finding elements?

- A. Yes
- B. No

Completely filled binary tree

Relating H (height) and N (\#nodes) find is $\mathrm{O}(\mathrm{H})$, we want to find af(N) $=\mathrm{H}$

Level 0

Level 1

Level 2

How many nodes are on level L in a completely filled binary search tree?
A. 2
B.L
C. $2^{*} \mathrm{~L}$
D. $2^{\text {L }}$

Relating H (height) and N (\#nodes) find is $\mathrm{O}(\mathrm{H})$, we want to find af(N) $=\mathrm{H}$

Finally, what is the height (exactly) of the tree in terms of N ?

Balanced trees

- Balanced trees by definition have a height of $\mathrm{O}(\log \mathrm{N})$
- A completely filled tree is one example of a balanced tree
- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: https://visualgo.net/bn/bst

Big O of traversals

Summary of operations

Operation	Sorted Array	Binary Search Tree	Linked List
Min			
Max			
Median			
Successor			
Predecessor			
Search			
Insert			
Delete			

