RUNNING TIME ANALYSIS - PART 2
BINARY SEARCH TREES RUNNING TIME

Problem Solving with Computers-I| C++
e fa;::::: - 5
gsin wa;n“"\w‘d _cewod¥ i

L
Midterm — Tuesday 5/19

- Cumulative but the focus will be on
- BST
- Running time analysis

L
Formal definition of Big-O

e f(n) and g(n): running times of two algorithms on inputs of size n.
e f(n) and g(n) map positive integer inputs to positive reals.

100

90

We say T = O(g) if there 1s a constant &

c >0 and k>0 such that |
f(n) <c - g(n) for all n >=Kk. ool ,
f — O(g) 40}

means that “f grows no faster than g’ .| 2n+20

20

10

0

! ! ! L ! ! ! L
1 2 3 4 5 6 7 8 9 10

L
Big-Omega

e f(n) and g(n): running times of two algorithms on inputs of size n.
e f(n) and g(n) map positive integer inputs to positive reals.

100

90

We say f = Q(g) if there are constants ool
¢ >0, k>0 such that ¢ - g(n) < 1(n) 7ol
forn>= k 60 ,
f= Q(g) a0t

means that “f grows at least as fastas g7 «| 2n+20

20

101

L
Big-Theta

e f(n) and g(n): running times of two algorithms on inputs of size n.
e f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there are constants
€1, Cy such that 0 <c,g(n) <f(n) <
c,g(n), for n >=k

f(n)

Running time
<9 (n)

N/ k

Problem Size (n)

What takes so long? Let’'s unravel the recursion...

F(n)
F(n-1) F(n-2)
F(n-2) F(n-3) F(n-3) F(n-4)

/N /N SN N

F(n-3) F(n-4) F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)

The same subproblems get solved over and over again!

Orders of growth

- We are interested in how
algorithm running time scales
with input size

- Big-Oh notation allows us to
express that by ignoring the
details

- 20n hours v. n2 microseconds:

* which has a higher order of
growth?

- Which one is better?

100

N

90
80
70
60
50
40
30
20
10
0

nlogan n

0

nl2nm?

%
i
Vv
P &
oA
V4
7
3
7/
7
I
7
/
V¢
7
y
7
v
v
o
A
7
4l
7
Ha
Nn |
R T L 3 IO g2n

n

Running Time Complexity
Start by counting the primitive operations

/* N is the length of the array*/
int sumArray(int arr[], int N)
{
int result=0;
for(int i=0; 1 < N; i++)
result+=arr[i];
return result;

e kiL_L._
Big-O notation

Steps —1 54| 1 | - Simplification 1: Count steps instead of absolute time

1 3 - Simplification 2: Ignore lower order terms
10 53 - Does the constant 3 matter as N gets large?
1000 5003 - Simplification 3: Ignore constant coefficients in the
) leading term (5*N% simplified to N

00000 500003
10000000 50000003 After the simplifications,

The number of steps grows linearly in N
Running Time = O(N) pronounced “Big-Oh of N”

Big-O lets us focus on the big picture

Recall our goals:
- Focus on the impact of the algorithm
- Focus on asymptotic behavior (running time as N gets large)

Given the step counts for different algorithms, express the
running time complexity using Big-O

..10000000

. 3*N

. 6*N-2

. 15*N + 44

. 50*N*1ogN

. N2

. N2-6N+9

. 3N2+4*]1og (N)+1000

00 Jd o O & W DN B

For polynomials, use only leading term, ignore coefficients: linear, quadratic

L
Common sense rules of Big-O

1. Multiplicative constants can be omitted: 14n2 becomes n?2 .

2

2. n@ dominates nP if a > b for Instance, n“ dominates n.

3. Any exponential dominates any polynomial: 3" dominates no (it even
dominates 2M).

e
What is the Big O of sumArray2

/* N is the length of the array*/

A.CKNZ) int sumArray2(int arr[], int N)
B. O(N) {
C. O(N/2) int result=0;
for(int i=0; i1 < N; i=i+2)
D. O(log N) .
1t+= ;
E. None of the array e arriil

return result;

e
What is the Big O of sumArray2

/* N is the length of the array*/

A.CKNZ) int sumArray2(int arr[], int N)
5. O(N) { .

int result=0;
C. 82:\1/2?\1) for(int i=1; 1 < N; 1i=1%*2)
. O(log result+=arr[i];
E. None of the array return result;

}

L
What is the Big-O running time of algoX?

* Assume dataA is some data structure that contains M keys. A O(N 2
* Given: running time of operations for dataA: ' ()

- insert: O(log M) B. O(NlogN)

* min: O(1) C_()aq)

- delete: O(log M)

D. O(log N)

void algoX(int arr[], int N) E. Not enough information to
{ compute

dataA ds;//ds contains no keys

for(int i=0; i < N; i=i++)
ds.insert (arr[i]) ;

for(int i=0; i < N; i=i++) {
arr[i] = ds.min () ;
ds.delete (arr[i]) ;

e
Best case, worst case, average case running times

Operations on sorted arrays
- Min :

- Max:

- Median:

- Successor:

- Predecessor:

- Search:

- Insert :

* Delete:

6 1314 |25|33|43 51|53 /64 |72|84 93959697
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

| |
lo hi

Worst case analysis of binary search

bool binarySearch(int arr[], int element, int N){
//Precondition: input array arr 1is sorted in ascending order
int begin = 0;
int end = N-1;
int mid;
while (begin <= end){
mid = (end + begin)/2;
if(arr[mid]==element){
return true;
}else if (arr[mid]l< element){
begin = mid + 1;
relseq
end = mid - 1;

}
}

return false:

}

Binary Search Trees

- WHAT are the operations supported?
- HOW do we implement them?

- WHAT are the (worst case) running times of each operation?

.
Height of the tree

-’ Path — a sequence of nodes and edges connecting a node with a descendant.
@ « A path starts from a node and ends at another node or a leaf
“===l¢ Height of node — The height of a node is the number of edges on the longest
downward path between that node and a leaf.

BSTs of different heights are possible with the same set of keys
Examples for keys: 12, 32, 41, 42, 45

Worst case Big-O of search

() - Given a BST of height H with N nodes,
a e what is the worst case complexity of

searching for a key?
OEONO

. 0O(1)

. O(log H)

. O(H)

. O(H*log H)
- O(N)

m o O o »r

Worst case Big-0 of insert

e -Given a BST of height H and N
nodes, what is the worst case

@ e complexity of inserting a key?

o(1)
) () (=

moowx»

Worst case Big-O of min/max

e - Given a BST of height H and N nodes,
a e what is the worst case complexity of

finding the minimum or maximum key?
CYONORA

. O(log H)

- O(H)

. O(H*log H)
. O(N)

m O O o »r

Worst case Big-O of predecessor/successor

e - Given a BST of height H and N nodes,
a e what is the worst case complexity of

finding the predecessor or successor key?
OO ® ;o

moow»

Worst case Big-O of delete

e -Given a BST of height H and N
nodes, what is the worst case
a e complexity of deleting the key

(assume no duplicates)?
e 0 @ - 0O(1)

moow»

Worst case analysis

Are binary search trees really faster than linked lists for finding elements?
- A. Yes
- B. No

data:| 1 data:| 2 data:
next: »next: .next:lzl

As

Ak

S
Completely filled binary tree

Level 0 e Nodes at each level have exactly two children,

except the nodes at the last level
Level 1 a e

Level 2 e ee @

Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level O

Level 1

Level 2

How many nodes are on level L in a completely filled binary search tree?
A.2

B.L

C.2"L

D.2L

Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H

Level O

Level 1

Level 2

Finally, what is the height (exactly) of the tree in terms of N?

Balanced trees

- Balanced trees by definition have a height of O(log N)
- A completely filled tree is one example of a balanced tree
- Other Balanced BSTs include AVL trees, red black trees and so on

- Visualize operations on an AVL tree: https://visualgo.net/bn/bst

https://visualgo.net/bn/bst

Big O of traversals

e In Order:
Pre Order:
a e Post Order:

Summary of operations

Sorted Array |Binary Search Tree |Linked List
Min

Max

Median
Successor
Predecessor
Search
Insert
Delete

