
Big O: What does it really mean?

of
In CReicursive f b

primitive i
operations

IIrahve fit
in

RunningTime n size ofthe input

Big O is an upper limit on the running

time of an algorithm as n gets large



f n 5 NZ log N t NI 110 00
z 0 N'log N

re

n

f n z 5 N'logN 1 Nat 1000g

S 5N logN 1N'logntweign

7 N'log N
ingen

flu O Neocon



A more precise definition of Big-O
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = O(g) if there is a constant 
c > 0  and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g) 
means that “f grows no faster than g”

C

I fCn
like



According to the definition on the previous

slide if f O g f Och for

any h g
So if f 0 N logN then technically

2 0 Ws

f a 0 Wh and so on

But in practice when doing Big o

analysis we look for the lowest

older function that satisfies the

definition ofBig oh
the tightest upper

bound to fCn



Big-Omega
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = Ω(g) if there are constants 
c > 0, k>0 such that c · g(n) ≤ f(n) 
for n >=  k

f = Ω(g)
means that “f grows at least as fast as g”



Big-Theta
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = Θ(g) if there are constants 
c1, c2 , k such that 0 ≤ c1g(n) ≤ f(n) ≤ 
c2g(n), for n >=k

Running time

Problem Size (n)



What is the Big-O running time of algoX?
• Assume dataA is some data structure that supports the following operations 

with the given running times, where N is the number of keys stored in the 
data structure: 

• insert: O(log N)  
• min: O(1) 
• delete: O(log N) 

void algoX(int arr[], int N) 
{   
       dataA ds;//ds contains no keys   
       for(int i=0; i < N; i=i++)     
              ds.insert(arr[i]); 
       for(int i=0; i < N; i=i++)     
              arr[i] = ds.min(); 
              ds.delete(arr[i]);  
}

A. O(N2) 
B. O(N logN) 
C. O(N) 
D. O(log N) 
E. Not enough information to 

compute

A
n

n is the no ofKeys in dsn D
n p

input E

Bad

Dam g

3



Reasons

Each insert takes adifferent

Running time of
amount of time

because

less than the running time depends

this loop is on the number ofkeys

C N togN already in ds

The first insert takes
the

least time the last one

takes the most

Although we don't know

Running time ofthis the exact numberof
Coop is less than operations for

each

insert we can find
N tag logN an upper limit

Specifically the

Overall running running timeof
each

insert is less than
time is a log N

G Nlog Nt CzN t GNlog
N

OCNlogW


