
Big O: What does it really mean?
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Big O is an upper limit on the running

time of an algorithm as n gets large
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A more precise definition of Big-O
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = O(g) if there is a constant 
c > 0  and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g) 
means that “f grows no faster than g”
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Big-Omega
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = Ω(g) if there are constants 
c > 0, k>0 such that c · g(n) ≤ f(n) 
for n >=  k

f = Ω(g)
means that “f grows at least as fast as g”



Big-Theta
• f(n) and g(n): running times of two algorithms on inputs of size n. 
• f(n) and g(n) map positive integer inputs to positive reals. 

We say f = Θ(g) if there are constants 
c1, c2 , k such that 0 ≤ c1g(n) ≤ f(n) ≤ 
c2g(n), for n >=k
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What is the Big-O running time of algoX?
• Assume dataA is some data structure that supports the following operations 

with the given running times, where N is the number of keys stored in the 
data structure: 

• insert: O(log N)  
• min: O(1) 
• delete: O(log N) 

void algoX(int arr[], int N) 
{   
       dataA ds;//ds contains no keys   
       for(int i=0; i < N; i=i++)     
              ds.insert(arr[i]); 
       for(int i=0; i < N; i=i++)     
              arr[i] = ds.min(); 
              ds.delete(arr[i]);  
}

A. O(N2) 
B. O(N logN) 
C. O(N) 
D. O(log N) 
E. Not enough information to 
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Reasons

Each insert takes adifferent
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