STANDARD TEMPLATE LIBRARY
STACKS

Problem Solving with Computers-II C l '
f AO 10de dQs:ctee a:d;
.U\-qu nane=?]
r&ﬁ ’ “gxt “\a‘r-(\ \L\ 13 ‘53‘?‘:‘"3“*

e T
C++STL

- The C++ Standard Template Library is a very handy set of three built-in
components:

; ¢ wehur
- Containers: Data structures —> Jenerte dote Shuchures
- Iterators: Standard way to search containers— denerce Looy of, me\gl

- Algorithms: These are what we ultimately use to solve problems Heobly

ook sYuche

C++ STL container classes

array =9 —" xed k"j" M{"

vector =3 gynaww b PRI
forward list —) gin e ~\inke .
list —> Jewlle - Lintied K8
set =3 bu\ﬁ'\CQJ BSf
stack '-oaga
queue
priority queue
multiset (non unique keys) 0\‘-3 S
deque a) -~
unordered set OV
il B 16X X
unordered map
multimap
bitset

Stacks — container class available in the C++ STL

- Container class that uses the Last In First Out (LIFO) principle

- Methods
. push() = mscd 0 fae Yop 0} Stech

::. f:pp() 9Ae(c&c Pu.st\((‘t‘g; The d odacvudhut "ok
iv. empty()-;«hw Put ®)) RY Vs dfrer e &“W‘
«1[@-[\) I’D L) Hoe -mf\hrm gl&d!.
FOP oven we\

mﬂv | O Lollons Lifo
P%(v\ufle .
Demo reversing a string

Lab05 — part 1: Evaluate a fully parenthesized infix expression

(4*((5+3.2)/1.5))// okay

(4*((5+3.2)/1.5)// unbalanced parens - missing last ‘)

(4*(5+3.2)/1.5))/ unbalanced parens - missing one ‘(’

4*((5+3.2)/1.5)/lnot fully-parenthesized at **’ operation

(4*(5+3.2)/1.5)/ not fully-parenthesized at ‘/’ operation

Jus 5 ror pelaned

* s'-“k<c.j\&'> S,’
[(272)+(8+4)) o-push(()

Initial Read Read
empty and push and push
stack first (second (

|| L

((272)+(8+4))

7
Initial Read
empty and push
stack first (

Ay

.{,(are [
f('

else

Read
and push
second (

H

(

What should be the next step

after the first right

parenthesis is encountered?

A. Push the right parenthesis
onto the stack

9” the stack is not ?._Ety pop
the next item on the top of
the stack

C.Ignore the right parenthesis
and continue checking the
next character

D. None of the above

22")
)>

Fe)wr\ &&f

)

((272)+(8+4))

Read
Initial Read Read Read first Read second) Read third
empty and push and push) and pop and push and pop) and pop
stack first (second (matching (third (matching (the last (

UMUK

Evaluating a fully parenthesized infix expression

+
(((6 + 9)/3)*(6 - 4)) | 1 .
(rndent's (ol demg<d i duss

ﬂgﬁ A+ ¢ LZJ
3/ 18 U

Evaluating a fully parenthesized infix expression

Characters read so far (shaded): Ne can waluske o
DD o 2 iy ronisaed

Numbers Operations

U‘f(&,’m “9"‘7 ho Sedit

Evaluating a fully parenthesized infix expression

Characters read so far (shaded):

(€6 +9) / 3) * (6 -4))

Numbers

9
6

Operations

=+

Before computing 6 + 9

6 + 9 is 15

>

Numbers Operations

15

After computing 6 + 9

Evaluating a fully parenthesized infix expression

Characters read so far (shaded):

(€6 +9) /3) * (6 -4))

Numbers

3
15

Operations

/

Before computing 15/3

15 / 3 is 5

Numbers Operations

5
After computing 15/3

Notations for evaluating expression

* Infix number operator number
- (Polish) Prefix operators precede the operands
- (Reverse Polish) Postfix operators come after the operands

Prefrx (Polishe) PO“—TL,,‘(&W?L
3%5 O A g

4 /2 / o 3 Hu /
MARCAE) 3§ C»
sl 73

725 »+ U2t

Small group exercise

Write a ADT called in minStack that provides the following methods
» push() // inserts an element to the “top” of the minStack

» pop() // removes the last element that was pushed on the stack

* top () // returns the last element that was pushed on the stack

* min() // returns the minimum value of the elements stored so far

GAYLE LAAKMANN MCDOWELL Bliro

Summary of operations

Sorted Array |Binary Search Tree |Linked List
Min

Max

Median
Successor
Predecessor
Search
Insert
Delete

