STANDARD TEMPLATE LIBRARY
STACKS
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- The C++ Standard Template Library is a very handy set of three built-in
components:
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- Containers: Data structures —> Jenerte dote Shuchures
- Iterators: Standard way to search containers— denerce  Looy of, me\gl

- Algorithms: These are what we ultimately use to solve problems Heobly
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C++ STL container classes
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Stacks — container class available in the C++ STL

- Container class that uses the Last In First Out (LIFO) principle

- Methods
. push() = mscd 0 fae Yop 0} Stech
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Lab05 — part 1: Evaluate a fully parenthesized infix expression

(4*((5+3.2)/1.5))// okay

(4*((5+3.2)/1.5)// unbalanced parens - missing last ‘)

(4*(5+3.2)/1.5) )/ unbalanced parens - missing one ‘(’

4*((5+3.2)/1.5)/lnot fully-parenthesized at **’ operation

(4*(5+3.2)/1.5)/ not fully-parenthesized at ‘/’ operation
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What should be the next step

after the first right

parenthesis is encountered?

A. Push the right parenthesis
onto the stack

9” the stack is not ?._Ety pop
the next item on the top of
the stack

C.Ignore the right parenthesis
and continue checking the
next character

D. None of the above
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Evaluating a fully parenthesized infix expression
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(((6 + 9)/3)*(6 - 4)) | 1 .
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Evaluating a fully parenthesized infix expression

Characters read so far (shaded): Ne can waluske o
DD o 2 iy ronisaed

Numbers Operations
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Evaluating a fully parenthesized infix expression

Characters read so far (shaded):

(€6 +9) / 3) * (6 -4))

Numbers

9
6

Operations

=+

Before computing 6 + 9

6 + 9 is 15

>

Numbers Operations

15

After computing 6 + 9



Evaluating a fully parenthesized infix expression

Characters read so far (shaded):

(€6 +9) /3) * (6 -4))

Numbers

3
15

Operations

/

Before computing 15/3

15 / 3 is 5

Numbers Operations

5
After computing 15/3




Notations for evaluating expression

* Infix  number operator number
- (Polish) Prefix operators precede the operands
- (Reverse Polish) Postfix operators come after the operands
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Small group exercise

Write a ADT called in minStack that provides the following methods
» push() // inserts an element to the “top” of the minStack

» pop() // removes the last element that was pushed on the stack

* top () // returns the last element that was pushed on the stack

* min() // returns the minimum value of the elements stored so far
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Summary of operations

Sorted Array |Binary Search Tree |Linked List
Min

Max

Median
Successor
Predecessor
Search
Insert
Delete



