HEAPS

Probl
em S
olving wi
g with Comput
ers-l|
GitH
ub

l'mcxude gt
usind nanes?
int padl ut
ookl wol2 ,,__—3‘:.;:3""' o
getor® =

]

E,,MH46Z6U6AZSWWH
How is PAO2 going?

A. Done

B. On track to finish

C. Having some difficulties
D. Just started

E. Haven't started

e
Heaps
* Clarification

* heap, the data structure is not related to heap, the region of memory
» What are the operations supported?

» What are the running times? Nuchure - ma‘r\-HP«—{’,
. e wa deras
Hure ane two vorzets |

max - <o

e
G supporke the IS °f
wh OO 7 ifgw ~ Lo reeums T min kg
P(,or ® / Zf %, £r(\ rehunt b TS b:’)
p O e s bey o wpO (etar e
(4

S

P P D /! ™
oy

heap

Fime %‘

Rw\nmj

‘o O
0
1N«ecC
X
L o
N keys s
- [9N)
0
Ol
) =
th(

Hacn
b ther

-

() 2001)

tod)

H N Eet’s (h ¢acdh gam Sy ctunt

Min-Heaps Max-Heap BST bo.(ancd 83T

eaps

- Insert : (@) (\%N) O“O‘S N) o(N) o(.LOSN)
- Min: lso“ - O(N) ol LOSN)
- Delete Min: O (N) — o) ol stN)
- Max N 0(‘) ,J) OCN‘) e(\w‘s N)
- Delete Max — Ol (o& oln) o 9"6 N)
Applications:
- Efficient sort

* Finding the median of a sequence of numbers
* Compression codes

Choose heap if you are doing repeated insert/delete/(min OR max) operations

5
std::priority _queue (STL's version of heap)

A C++priority queue is a generic container, and can store any data type
on which an ordering can be defined: for example ints, structs (Card),
pointers etc.

he keys
#inclu:£<queue> L J Mo\uo)

priority queue<int> pq;

Methods:

*push() //insert
* pop () //delete max priority item ues OWe wded ou

* top() //get max priority item) l&j vad csvd;? &l‘\lj 6#(“,.[4-
*empty() //returns true if the priority queue 1s empty

00' YVWAR P'r\cﬂtj 1))
* You can extract object of highest priority in O(log N) »\qu)
+ To determine priority: objects in a priority queue must be comparable to eachi other

STL Heap implementation: Priority Queues in C++

What is the output of this code?

priority queue<int> pq; A.10 2 80
pg.push(10); B.2 10 80
pq.pzzizgé;. 80 10 2
22u5<<pq,toé(); D.80 2 10
E. None of the above

pg.pop();

cout<<pg.top();

pg.pop();

cout<<pq.top();
Pg.pop();

Heaps as binary trees

* Rooted binary tree that is as complete as possible
* In a min-Heap, each node satisfies the following heap property:
key(x)<= key(children of x)

Min Heap with 9 nodes

Where is the minimum element?

Heaps as binary trees

* Rooted binary tree that is as complete as possible
* In a max-Heap, each node satisfies the following heap property:
key(x)>= key(children of x)

Max Heap with 9 nodes

Where is the maximum element?

Structure: Complete binary tree

A heap is a complete binary tree: Each level is as full as possible.
Nodes on the bottom level are placed as far left as possible

GG

|dentifying heaps

Starting with the following min-Heap which of the following operations
will result in something that is NOT a min Heap

A. Swap the nodes 40 and 32 @ ° @

B. Swap the nodes 32 and 43

C. Swap the nodes 43 and 40
f. Insert 50 as the left child of 45 @ Q e Q

&D

Insert 50 into a heap

* Insert key(x) in the first open slot at the last level of tree (going from left to right)
* If the heap property is not violated - Done
* Else: while(key(parent(x))>key(x)) swap the key(x) with key(parent(x))

> @

© 6 @& o @Y

2 4l u¥F us 5o

Insert 50, then 35, then 8

Delete min

* Replace the root with the rightmost node at the last level
* “Bubble down”- swap node with[one of the childr@]until the heap
property is restored % | af L Fhe i k}

4

e
Under the hood of heaps

» An efficient way of implementing heaps is using vectors

+ Although we think of heaps as trees, the entire tree can be efficiently
represented as a vector!!

Implementing heaps using an array or vector .
\\{'{}@(3 mtl"'v‘&k s Inthe dre level by level, regd b T
'Ck‘f"" Lstden oot

Vale £ (0 12 Yo 322 4B uI US Y Sd
Index O 1 2 3 4 5 6 7 8 9

0 The entirg. mf—kce Shousn 01
0s
|/_®\97;§;)3 Yoo lefr Can bcr%

10 12 o vechon- The] Cm’“’.:—
hi '~ ™ veckr are
2 s L relohonchips o T i3
f (— me(;c.'f- (we Pon } stove PO
0 @ @ e Using vector as the internal data structure
of the heap has some advantages:

” % * More space efficient than trees

?é * Easier to insert nodes into the heap

Finding the parent ofa’ node In the vector representation

For a nod at index i, index of the parent is

G e int(i-1/2) .
QO 3* e
‘ w,ef-w Haw Yindex O)HS

’%\ru"r s int (l;})
2

Value 6 10 12 40 32 43 47 45 41

ch Index 0 1 2 3 4 5 6 7 8 --.12 \
- 0 0 v v 2 2 3 3 .14
LIS N

e
Insert into a heap

* Insert key(x) in the first open slot at the last level of tree (going from left to right)
* If the heap property is not violated - Done
* Else....

Insert the elements {12, 41, 47, 45, 32} in a min-Heap using the vector

representation of the heap N ‘
J‘y\ nchice we ncever im,? lemerd The bmcurj ‘?‘f(e t

ol mods & poindus

] e, P R e
i l“d L. e Vel

> e “ ‘y 2 s at ndm Y ﬂyPO‘Q‘:;SC.&QL vee

W) paresttsr) Ly 'ds pareatisat

LA
Wy 1 40 m3 a5 3Bl G@f .
2 e puebe kP

wp ! (d) 1 bubb

Insert 50, then 35

/@\ For a node at index i, index of the parent is
G G int(i-1/2)

O a
@@

Insert 8 into a heap 12

Value 6 10 1 40 32 47 45 41 50 35 Z ’
2 3

Index O 1 4 6 7 8 9 10 n

N Ha c e
lf\StrJ- 2 o index L (8 s C\ol:J e last medr 0 (ast tevel 9
' ser 820 keq 43
Fi’\b %s jll(ev\.l' ar ind€ (|—(%|’> - 5‘/ CJ

BUY o zwap, 3% ud

: ' . &-1\ - ey V2
Fid @% mew Porent at nNOLxX (;) Zg:aP 3% 2(3

¢

fter inserting 8, which node is the parent of 8 ? . atent at
Node 6 Find %5 newf
B. Node 12 index (2-1) = 0, kyt

C. None 43 2
D. None - Node 8 will be the root ‘b> & — ShP

Delete min

* Replace the root with the rightmost node at the last level

* “Bubble down”- swap node with one of the children until the heap
property is restored

@ O

@@0:: -

Traversing down the tree

L
Value 6~

Index O

When dsive a POP,
e A

feplcce Yhe min LD i
I“L k()-(in 'H\cf vecke (Y ‘)hﬁh

Delete & , by reducrp Hue 2 ol véckor by)

Bubble doon 4\ — [

32

43 47 45 4

o do Huss
5 6 7 8 neesd o Aud
- C - 4ea chBCRA (n

v etsr .

For a node at index i, what is the index of
the left and right children?

(2%, 2%i+1)
B. (2*i+1, 2*i+2)
C. (log(i), log(i)+1)
D. None of the above

e
Next lecture

* More on STL implementation of heaps (priority queues)
* Queues

