
DATA STRUCTURE SELECTION
FINAL WRAP UP

Big-O: Naiive sort
What is the Big-O of the following algorithm?

void selectionSort(vector<int>& a, int N){
 //Precondition: unsorted array
 //Post condition: sorted array in ascending order
 for(int i =0; i<N; i++){
 int index=i;
 for(int j = i+1; j<N;j++){
 if(a[j]<a[index]){
 index = j;
 }
 }
 int tmp = a[i];
 a[i] = a[index];
 a[index]=tmp;
 }
}

2

Data structure application
Use one of the data structures we have learned to improve the running time.

void selectionSort(vector<int>& a, int N){
 //Precondition: unsorted array
 //Post condition: sorted array in ascending order
 for(int i =0; i<N; i++){
 int index=i;
 for(int j = i+1; j<N;j++){
 if(a[j]<a[index]){
 index = j;
 }
 }
 int tmp = a[i];
 a[i] = a[index];
 a[index]=tmp;
 }
}

3

Review copy constructor
Implement the copy constructor for a BST

4

Data structure Comparison
5

Insert Search Min Max Delete min Delete max Delete (any)

Sorted array

Unsorted array

Sorted linked list (assume
access to both head and tail)

Unsorted linked list

Stack

Queue

BST (unbalanced)

BST (balanced)

Min Heap

Max Heap

Data structure Comparison
6

Insert Search Min Max Delete min Delete max Delete (any)

Sorted array O(N) O(logN) O(1) O(1) O(N) if
ascending
order, else O(1)

O(1) if
ascending, else
O(N)

O(logN) to find,
O(N) to delete

Unsorted array O(1) O(N) O(N) O(N) O(N) O(N) O(N)

Sorted linked list (assume
access to both head and tail)

O(N) O(N) O(1) O(1) O(1) O(1) O(N) to find,
O(1) to delete

Unsorted linked list O(1) O(N) O(N) O(N) O(N) O(N) O(N) to find,
O(1) to delete

Stack O(1) - only
insert to top

Not supported Not supported Not
supported

Not supported Not supported O(1) - Only the
element on top of
the stack

Queue O(1) - only to
the rear of the
queue

Not supported Not supported Not
supported

Not supported Not supported O(1) - only the
element at the
front of the
queue

BST (unbalanced) O(N) O(N) O(N) O(N) O(N) O(N) O(N)

BST (balanced) O(logN) O(logN) O(logN) O(logN) O(logN) O(logN) O(logN)

Min Heap O(logN) Not supported O(1) Not
supported

O(logN) Not supported O(logN)

Max Heap O(logN) Not supported Not supported O(1) Not supported O(logN) O(logN)

