
IMPLEMENTING C++ CLASSES:
ACCESS SPECIFIERS
CONSTRUCTORS
Problem Solving with Computers-II

Read the syllabus. Know what’s required. Know how to get help.

From last lecture…
• Last time we defined a class Complex and wrote a main function that created

objects of this class
• We did not implement the member functions of the class.
• When the code was compiled with g++, it resulted in a linker error but when we

compiled with the -c option, compilation was successful. Why?

A. The -c option suppresses linker errors and produces and executable
B. The -c option does not attempt to link code and no executable is produced
C. None of the above

In Java:

public class DayOfYear {
 public void setDate(int mon, int day){
 dd = day;
 mm = mon
 }
 private int dd;
 private int mm;

}

C++, attempt 1:

class DayOfYear {
 public void setDate(int mon, int day);
 private int dd;
 private int mm;
};

Which of the following is a problem with the C++ implementation above?
A. The implementation of the member function setDate should be included in the class
B. The class DayOfYear should be declared public
C. The semicolon at the end of the class will cause a compile error
D. In C++ you specify public and private in regions, not on each variable or function

3

C++, attempt 2:

class DayOfYear {

 public:
 void setDate(int mon, int day);
 private:
 int dd;
 int mm;
};
void DayOfYear::setDate(int mon, int day){
 mm = mon;
 dd = day;
}

int main(){
 DayOfYear today;
 today.setDate(1, 9);
 cout<<“Today’s date is: ”;

 cout<< today.mm <<“/“<< today.dd;
 return 0;

}

4

Which of the following is a problem with
the C++ implementation?

A. In definition of setDate, member
variables mm and dd should be
accessed via objects

B. Objects declared outside the class
cannot access the private member
variables

C. None of the above

C++, attempt 4:
class DayOfYear {

 public:
 void setDate(int mon, int day);
 int getMonth();

Int getDay();
 private:
 const int dd;
 const int mm;
};
void DayOfYear::setDate(int mon, int day){
 mm = mon;
 dd = day;
}
int DayOfYear::getMonth(){
 dd = 1;
 return mm;
}
int DayOfYear::getDay(){
 mm = 12;
 return dd;
}

5

How can we make sure that a function
doesn’t inadvertently change the member
variables of the class?

A. Declare the variables const (as shown)
B. Declare the function as a const

int main(){
 DayOfYear today;
 today.setDate(1, 9);
 cout<<“Today’s date is: ”;

 cout<< today.getMonth() <<“/“
 << today.getDay();

}

C++, attempt 5: this version is correct!!!
class DayOfYear {

 public:
 void setDate(int mon, int day);
 int getMonth()const;

int getDay()const;
 private:
 int dd;
 int mm;
};
void DayOfYear::setDate(int mon, int day){
 mm = mon;
 dd = day;
}
int DayOfYear::getMonth() const{
 return mm;
}
int DayOfYear::getDay() const{
 return dd;
}

6

int main(){
 DayOfYear today;
 today.setDate(1, 9);
 cout<<“Today’s date is: ”;

 cout<< today.getMonth() <<“/“
 << today.getDay();

}

How can we make sure that a function
doesn’t inadvertently change the member
variables of the class?

Declare the function as a const

Introduce new terms:
• Accessors (getters)
• Mutators (setters)

C++, attempt 5: this version is correct!!!
class DayOfYear {

 public:
 void setDate(int mon, int day);
 int getMonth()const;

int getDay()const;
 private:
 int dd;
 int mm;
};
void DayOfYear::setDate(int mon, int day){
 mm = mon;
 dd = day;
}
int DayOfYear::getMonth() const{
 return mm;
}
int DayOfYear::getDay() const{
 return dd;
}

7

int main(){
 DayOfYear today;
 // today.setDate(1, 9);
 cout<<“Today’s date is: ”;

 cout<< today.getMonth() <<“/“
 << today.getDay();

}

• What is the output of this code?

C++, attempt 5: We’ll now try to improve this
class DayOfYear {

 public:
 void setDate(int mon, int day);
 int getMonth()const;

int getDay()const;
 private:
 int dd;
 int mm;
};
void DayOfYear::setDate(int mon, int day){
 mm = mon;
 dd = day;
}
int DayOfYear::getMonth() const{
 return mm;
}
int DayOfYear::getDay() const{
 return dd;
}

8

Constructor: An “initialization” function that is
called when an object of the class is created

* If you don’t explicitly write a constructor, C++ will
generate a default one for you
* Member variables are initialized to junk values

int main(){
 DayOfYear today;
 today.setDate(1, 9);
 cout<<“Today’s date is: ”;

 cout<< today.getMonth() <<“/“
 << today.getDay();

}

Constructor

C++, attempt 6:
class DayOfYear {

 public:
 void setDate(int mon, int day);
 int getMonth()const;

int getDay()const;

 private:
 int dd;
 int mm;
};

//Function definitions omitted

9

• Constructors must have the same name as the
class

• Constructors don’t have a return type
• Different types of constructors

1. Constructor with no parameters (default)
2. Constructor with parameters

(parameterized constructor)
3. Constructor with parameters that have

default values

int main(){
 DayOfYear today;
 //today.setDate(1, 9);
 cout<<“Today’s date is: ”;

 cout<< today.getMonth() <<“/“
 << today.getDay();

}

Constructor:
Writing your own

C++, attempt 7:
class DayOfYear {

 public:
 void setDate(int mon, int day);
 int getMonth()const;

int getDay()const;

 private:
 int dd;
 int mm;
};

//Function definitions omitted

10

int main(){
 DayOfYear today;
 //today.setDate(1, 9);
 cout<<“Today’s date is: ”;

 cout<< today.getMonth() <<“/“
 << today.getDay();

}

Parametrized Constructor

C++, attempt 7:
class DayOfYear {

 public:
 void setDate(int mon, int day);
 int getMonth()const;

int getDay()const;
DayOfYear(int mon, int day);

 private:
 int dd;
 int mm;
};
DayOfYear()::DayOfYear(int mon, int day)
{

mm = mon;
dd = day;

}

//Function definitions omitted

11

int main(){
 DayOfYear today;
 cout<<“Today’s date is: ”;

 cout<< today.getMonth() <<“/“
 << today.getDay();

}

Parametrized Constructor

What is the output of this code?
A. Compiler error
B. Junk values (default constructor is called)

C++, attempt 8:
class DayOfYear {

 public:
 void setDate(int mon, int day);
 int getMonth()const;

int getDay()const;
DayOfYear(int mon=1,int day=1);

 private:
 int dd;
 int mm;
};
DayOfYear()::DayOfYear(int mon, int day)
{

mm = mon;
dd = day;

}

//Function definitions omitted

12

int main(){
 DayOfYear today;
 cout<<“Today’s date is: ”;

 cout<< today.getMonth() <<“/“
 << today.getDay();

}

Parametrized Constructor
with default parameters
In the declaration of the parameterized
constructor, specify default parameter values

Objects can be created in all the following ways:

DayOfYear today;
DayOfYear today{1,8};
DayOfYear today{2};

THE BIG FOUR

The Big Four
14

1. Constructor

2. Destructor

3. Copy Constructor

4. Copy Assignment

Constructor and Destructor
Every class has the following special methods:

• Constructor: Called right AFTER new objects are created in
memory

• Destructor: Called right BEFORE an object is deleted from
memory

The compiler automatically generates default versions, but you
can override them

Constructor (last class)
void foo(){
 Quadratic p;
 Quadratic* q = new Quadratic;
 Quadratic w{10, 5, 1};
}

How many times is the constructor
called in the above code?
A. Never
B. Once
C. Two times
D. Three times

Initializer lists
* Used to initialize member variables at the time they are created
* Must be used to initialize constant member variables

18

• Must have the same name as the class preceded by a ~ (tilda)
• Does not have a return type
• Called right BEFORE an object is deleted from memory

Destructor

Destructor

The destructor of which of the objects is called after foo()
returns?
A.p
B.q
C. *q
D.None of the above

void foo(){
 Quadratic p;

Quadratic *q = new Quadratic;
}

Copy constructor
• Creates a new object and initializes it using an existing object

Copy constructor
• In which of the following cases is the copy constructor called?

A. Quadratic p1; Quadratic p2{1, 2, 3};
B. Quadratic p1{1, 2, 3}; Quadratic p2{p1};
C. Quadratic *p1 = new Quadratic{1, 2, 3};
 Quadratic p2 = *p1;
D. B&C
E. A, B & C

Copy assignment
• Default behavior: Copies the member variables of one object into another

Quadratic p1{1, 2, 3}; // Parametrized constructor
Quadratic p2;
p2 = p1; // Copy assignment function is called

double foo(Quadratic p){
 return p.evaluate(10);

}
int main(){

Quadratic q{1, 2, 3};
foo(q);
}

Which of the following special methods is called as a result of calling
foo?
A. Parameterized constructor
B. Copy constructor
C. Copy Assignment
D. Destructor

• Classes have member variables and member functions
(method). An object is a variable where the data type is a class.

• You should know how to declare a new class type, how to
implement its member functions, how to use the class type.

• Frequently, the member functions of an class type place
information in the member variables, or use information that's
already in the member variables.

• Constructors are used to initialized objects
• In the future we will see more features of OOP.

 Summary

Next time
• Linked Lists and operator overloading

