
 
BIG FOUR AND THE RULE OF THREE
LINKED LISTS

Problem Solving with Computers-II

The Big Four (review)
2

1. Constructor

2. Destructor

3. Copy Constructor

4. Copy Assignment

Ctt provides default implementations
Create a new object
Called Right before an object

isdestroyed

C I C 2

override you write your
vesion

Constructor (review)
void foo(){
 Complex p;
 Complex* q = new Complex;
 Complex w{10, 5};
}

How many times is the constructor
called in the above code?
A. Never
B. Once
C. Two times
D. Three times

Kdefanetconstruan
P

µ
Heap

aD o.ro Ig

Dif
four times

Destructor (review)

The destructor of which of the objects is called after foo()
returns?
A.p
B.q
C. *q
D.None of the above

void foo(){
 Complex p;

Complex *q = new Complex;
}

Stuck Heap

Paths as
Adelete q destroys or q1J

Complex

0 e tachi

I
YI.FI anruurdneno9eeosmu
p g

E Both p and q p is oftype
complex

q is of type Complext

Copy constructor (review)
• In which of the following cases is the copy constructor called?

A. Complex p1; Complex p2{1, 2};
B. Complex p1{1, 2}; Complex p2{p1};
C. Complex *p1 = new Complex{2, 3};
 Complex p2 = *p1;
D. B&C
E. A, B & C

q T

Paramelericed

g

existing object

OFQ kampie.ge P2 P 3s

double foo(Complex p){
 return p.conjugate(10);

}
int main(){

Complex q{1, 2};
foo(q);

}

Which of the following special methods is called when passing
parameters to foo()?
A. Parameterized constructor
B. Copy constructor
C. Copy assignment
D. Destructor

11 Pass parameter 9 Pass by value

0

Linked Lists
7

Linked List

Array List 10 20

 0

 30

What is the key difference between the two?

 0 0

s
Node

Questions you must ask about any data structure:
8

• What operations does the data structure support?
 A linked list supports the following operations:

1. Insert (a value to the head)
2. Append (a value to the tail)
3. Delete (a value)
4. Search (for a value)
5. Min
6. Max
7. Print all values

• How do you implement each operation?
• How fast is each operation?

Linked list U

I

Linked-list as an Abstract Data Type (ADT)
class LinkedList {
public:
 LinkedList();
 ~LinkedList();
 // other public methods

private:
 struct Node {
 int info;
 Node* next;
 };
 Node* head;
 Node* tail;
};

The
d append int value I

b tini
head tail

If we were to use the default
Concructor that Ct t provides
then head tail will have junk
values.es

Linked list Linked list C i

head 033

tail 008

Initializert

hi

pt

RULE OF THREE
If a class defines one (or more) of the following it should probably explicitly
define all three:
1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:
1. What is the behavior of these defaults?
2. What is the desired behavior ?
3. How should we over-ride these methods?

void test_append_0(){
LinkedList ll;
ll.append(10);

 ll.print();
}

What is the result of running the above code?
A. Compiler error
B. Memory leak
C. Prints 10
D. None of the above

Assume:
* Default destructor
* Default copy constructor
* Default copy assignment

Behavior of default copy constructor
l1 : 1 -> 2- > 5 -> null
void test_default_copy_constructor(LinkedList& l1){

// Use the copy constructor to create a copy of l1

}
Assume:
* Overloaded destructor
* Default copy constructor
* Default copy assignment

* What is the default behavior?
* Is the default behavior correct ?
* How do we change it?

Behavior of default copy assignment
l1 : 1 -> 2- > 5 -> null

void default_assignment_1(LinkedList& l1){
LinkedList l2;
l2 = l1;

}

* What is the default behavior?
Assume:
* Overloaded destructor
* Default copy constructor
* Default copy assignment

Behavior of default copy assignment
void test_default_assignment_2(){
 LinkedList l1, l2;
 l1.append(1);
 l1.append(2)

l2.append(10);
l2.append(20);
l2 = l1;
l2.print()

}
Assume:
* Overloaded destructor
* Default copy constructor
* Default copy assignment

What is the result of running the above code?
A. Segmentation fault
B. Prints 1 , 2
C. Both A and B
D. None of the above

Behavior of default copy assignment
void test_default_assignment_2(){
 LinkedList l1;
 l1.append(1);
 l1.append(2)
 LinkedList l2{l1};

l2.append(10);
l2.append(20);
l2 = l1;
l2.print()

}
Assume:
* Overloaded destructor
* Overloaded copy constructor
* Default copy assignment

What is the result of running the above code?
A. Segmentation fault
B. Memory leak
C. Both A and B
D. None of the above

Overloading Binary Comparison Operators

void isEqual(const LinkedList & lst1, const LinkedList &lst2){
 if(lst1 == lst2)

 cout<<“Lists are equal”<<endl;
else
 cout<<“Lists are not equal”<<endl;

}

We would like to be able to compare two objects of the class using the
following operators
==
!=
and possibly others

Next time
• Linked Lists contd.
• GDB

