
 
LINKED LISTS (CONTD)
 RULE OF THREE
 OPERATOR OVERLOADING

Problem Solving with Computers-II

u

why do
we need to override

linkedlistthe big four for

Memory Errors
• Memory Leak: Program does not free memory allocated on the heap.

• Segmentation Fault: Code tries to access an invalid memory location

Stack Heapvoid too 9 p 1 Dint p new int

u

Dereferencing a null pointer int p O

a fuemorythat was
deallocatedcomes p DDefsegfaul

outof bound array access p new int

Double free error
delete P's
contccap
delete go 11double

He

RULE OF THREE
If a class overload one (or more) of the following methods, it should overload all
three methods:
1. Destructor
2. Copy constructor
3. Copy assignment

The questions we ask are:
1. What is the behavior of these defaults?
2. What is the desired behavior ?
3. How should we over-ride these methods?

delete j

void test_append_0(){
LinkedList ll;
ll.append(10);

 ll.print();
}

What is the result of running the above code?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. None of the above

Assume:
* Default destructor
* Default copy constructor
* Default copy assignment

iD Gracie

I
linked linkeouste g

iU Node

EE
o

A. To free LinkedList objects
B. To free Nodes in a LinkedList
C. Both A and B
D. None of the above

Why do we need to write a destructor for LinkedList?

what aregenerally created ontheheap

Behavior of default copy constructor
void test_copy_constructor(){

LinkedList l1;
l1.append(1);
l1.append(2);
LinkedList l2(l1);
l1.print();
l2.print();

}
Assume:
destructor: overloaded
copy constructor: default
copy assignment: default

What is the output?
A. Compiler error
B. Memory leak
C. Segmentation fault
D. Test fails
E. None of the above

Heap

stacke iz

Afterthefunctioncrewherroriswk datasetsFaenodes
on theheap

O

Ll l Z
f I

e

linked list L2 ll

I want deep copy of
El

e 2t.JO
leg 9

Reuse the appendC
in the

copy cohort

Behavior of default copy assignment
l1 : 1 -> 2- > 5 -> null

void default_assignment_1(LinkedList& l1){
LinkedList l2;
l2 = l1;

}

* What is the behavior of the default assignment operator?
Assume:
* Overloaded destructor
* Default copy constructor
* Default copy assignment

adefault nj
a t.IEJ
Segfault waiting tohappen

Behavior of default copy assignment
void test_default_assignment_2(){
 LinkedList l1, l2;
 l1.append(1);
 l1.append(2)

l2 = l1;
l2.print()

}

Assume:
* Overloaded destructor
* Default copy constructor
* Default copy assignment

What is the result of running the above code?
A. Prints 1 , 2
B. Segmentation fault
C. Memory leak
D. A &B
E. A, B and C

eling I 2

121

Behavior of default copy assignment
void test_default_assignment_3(){
 LinkedList l1;
 l1.append(1);
 l1.append(2)
 LinkedList l2{l1};

l2.append(10);
l2.append(20);
l2 = l1;
l2.print()

}
Assume:
* Overloaded destructor
* Overloaded copy constructor
* Default copy assignment

What is the result of running the above code?
A. Prints 1 , 2
B. Segmentation fault
C. Memory leak
D. A &B
E. A, B and C

I 2

If1 2 lo 2

D ez already Memory leak
her some nodes

Overloading Binary Comparison Operators

void isEqual(const LinkedList & lst1, const LinkedList &lst2){
 if(lst1 == lst2)

 cout<<“Lists are equal”<<endl;
else
 cout<<“Lists are not equal”<<endl;

}

We would like to be able to compare two objects of the class using the
following operators
==
!=
and possibly others

Overloading Binary Arithmetic Operators
We would like to be able to add two points as follows

LinkedList l1, l2;

//append nodes to l1 and l2;

LinkedList l3 = l1 + l2 ;

Overloading input/output stream
Wouldn’t it be convenient if we could do this:

LinkedList list;
cout<<list; //prints all the elements of list

Next time
• Recursion + PA01

