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Concept Question

       

head tail
(A)

(B): only the first node
(C): A and B
(D): All the nodes of the linked list 
(E): A and D

LinkedList::~LinkedList(){ 
delete head; 

} 
                                              

Which of the following objects are deleted when the destructor of Linked-list is called?

    class Node { 
        public: 
           int info; 
           Node *next; 
    };
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Concept question

       

head tail
(A)

(B): All the nodes in the linked-list
(C): A and B 
(D): Program crashes with a segmentation fault 
(E): None of the above

LinkedList::~LinkedList(){ 
delete head; 

} 
                                              

Which of the following objects are deleted when the destructor of Linked-list is called?

    Node::~Node(){ 
    delete next; 

    }
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LinkedList::~LinkedList(){ 
delete head; 

} 
                                              

    Node::~Node(){ 
    delete next; 

    }
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Trees
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 A tree has following general properties: 
 • One node is distinguished as a root; 
 • Every node (exclude a root) is connected 

by a directed edge from exactly one other 
node;  

      A direction is: parent -> children 
• Leaf node: Node that has no children
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Which of the following is/are a tree?

A. B.

C.

D. A & B 

E. All of A-C
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Binary Search Trees
• What are the operations supported? 

• What are the running times of these operations? 

• How do you implement the BST i.e. operations supported by it?
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Operations supported by Sorted arrays and Binary Search Trees (BST)

Operations
Min
Max
Successor
Predecessor
Search
Insert 
Delete
Print elements in order
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Binary Search Tree – What is it?
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Do the keys have to be integers?

• Each node:  
• stores a key (k) 
• has a pointer to left child, right child 

and parent (optional) 
• Satisfies the Search Tree Property

For any node, 
Keys in node’s left subtree  <= Node’s key 
Node’s key < Keys in node’s right subtree
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Which of the following is/are a binary search tree?
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BSTs allow efficient search!
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• Start at the root;  
• Trace down a path by comparing k with the key of the 

current node x: 
• If the keys are equal: we have found the key 

• If k < key[x] search in the left subtree of x 

• If k > key[x] search in the right subtree of x 

Search for 41, then search for 53
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class BSTNode { 

public: 
  BSTNode* left; 
  BSTNode* right; 
  BSTNode* parent; 
  int const data; 

  BSTNode( const int & d ) : data(d) {  
    left = right = parent = 0; 
  }    
};
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Define the BST ADT

Operations
Search
Insert
Min
Max
Successor
Predecessor
Delete
Print elements in order
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Traversing down the tree
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• Suppose n is a pointer to the root. What is the output 
of the following code: 

n = n->left; 
n = n->right; 

cout<<n->data<<endl;
A. 42 
B. 32 
C. 12 
D. 41 
E. Segfault



Traversing up the tree
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• Suppose n is a pointer to the node with value 50.  
• What is the output of the following code: 

n = n->parent; 
n = n->parent;

n = n->left;
cout<<n->data<<endl;

A. 42 
B. 32 
C. 12 
D. 45 
E. Segfault
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Insert
• Insert 40 
• Search for the key 
• Insert at the spot you expected to find it
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Maximum = 20

Max
Goal:  find the maximum key value in a BST 
Following right child pointers from the root, until a 
leaf node is encountered. The least node has the max 
value 

Alg: int BST::max()     
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Min = ?

Min
Goal:  find the minimum key value in a BST 
Start at the root. 
Follow ________ child pointers from the root, until a 
leaf node is encountered 
Leaf node has the min key value 

Alg: int BST::min()     18
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In order traversal: print elements in sorted order
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Algorithm Inorder(tree) 
   1. Traverse the left subtree, i.e., call Inorder(left-subtree) 
   2. Visit the root. 
   3. Traverse the right subtree, i.e., call Inorder(right-subtree) 
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Pre-order traversal: nice way to linearize your tree!
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Algorithm Preorder(tree) 
   1. Visit the root. 
   2. Traverse the left subtree, i.e., call Preorder(left-subtree) 
   3. Traverse the right subtree, i.e., call Preorder(right-subtree)  
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Post-order traversal: use in recursive destructors!
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Algorithm Postorder(tree) 
   1. Traverse the left subtree, i.e., call Postorder(left-subtree) 
   2. Traverse the right subtree, i.e., call Postorder(right-subtree) 
   3. Visit the root. 
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Predecessor: Next smallest element
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• What is the predecessor of 32? 
• What is the predecessor of 45?
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Successor: Next largest element
42

32

23

4520

50

• What is the successor of 45? 
• What is the successor of 50? 
• What is the successor of 60?
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Delete: Case 1
Case 1: Node is a leaf node 

• Set parent’s (left/right) child pointer to null 
• Delete the node
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Delete: Case 2
Case 2 Node has only one child 

• Replace the node by its only child
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Delete: Case 3
Case 3 Node has two children 
• Can we still replace the node by one of its 

children? Why or Why not?
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Binary Search 
• Binary search.   Given value and sorted array a[], find index i such 
that a[i] = value, or report that no such index exists. 

• Invariant.  Algorithm maintains a[lo] ≤ value ≤  a[hi]. 

• Ex.  Binary search for 33.

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966
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