DN
BINARY SEARCH TREES ;i/ N
AN A

Problem Solving with Computers-II C ' '
" aostc‘: a:d:
‘w:nl: nane®” A"
y © ma‘xﬂ“..\\:{za gace®®®”

O Vike

Concept Question lass Node {
: . . . public:
LinkedList::~LinkedList(){ int info:

[detete head; }

Node xnext;
y; 7

‘ | ‘IIIIIIIIB%__’>?tl:i_mzz>
/ 4 ‘\ .
Jonly the first node
\
:Aand B

(D): All the nodes of the linked list
(E):Aand D

Concept question The [ask cat

LinkedList: :~LinkedList(){ Node: :~Node(){ ﬁf_ﬁ%
delete head; delete next; vaeccreer
} . } de lebe D
Which of the following objects are deleted when the destructor of Linked-list is called?

head tail ¢ (2) ,L,/_\)\(S>

(A) T’ \: 5)
|| the nodeg in the linked-lisy 4 '/ ﬂd}f{ %
(C):Aand B

Notes : ok
(D): Program crashes with a segmentation fault ?Dzimbﬁ‘;“aﬁf\ resal

(E): None of the above in o Scgfuehd

-

LinkedList::~LinkedList(){ Node: :~Node(){

delete head; delete next;
} }

head tail
T~~~

N9 Dy

=
NS /<§S/\

(p
@7“10\(7 W@P. r M ek ?,'(}.‘)p cvx

lecorchns e Atree has following general properties:
Trees 2)

* One node is distinguished as a root; C
» Every node (exclude a root) is connected
by a directed edge from exactly one other
node;
A direction 1s: parent -> children \4}{/5
* Leaf node: Node that has no children

{i ('jb:

cl
0
<
E‘) Nom
o 3
L'L\%' dara
B0
N * /
" 3)&\”{
: [%r\h
;).

N
odse A
r@’w

o Nodu - o
Which of the following is/are,a tree? ¥oot|=

\/ Qmp“j free

A @ B. —

Sinﬁ le node fvee

E. All of A-C

Binary Search Trees (V

* What are the operations supported?

(amlla .
Noerk, delebc , Seardh, na, Vorile

’\/‘(2,(e
- What are the running times of these operations?

o, —# (oopren®

- How do you implement the BST i.e. operations supported by it?
e —

7

Operations supported by Sorted arrays and Binary Search Trees (BST)

Operations 'S m

" IMin J[_O\ 10 \ Qk%bm—\‘—l@‘
Max /«-‘ z—
Successor Ntk bwear fpue O TL 3 U
Predecessor ¢ .ci swathi Wer .
Search Bjnory Seondie
Insert N —
Delete >tow (laot) VD~

Print elements in order

Do the keys hat&"0 D& Integers?

Binary Search Tree — What is it?

« Each node:
» stores a key (k)
* has a pointer to left child, right child
and parent (optional)
Satisfies the Search Tree Propgrty

For any node,
Keys in node’s left subtree <= Node’s key
Node’s key < Keys in node’s right subtree

k@, s(TL) \(key (x) (keufm)

//;

B SN
Which of the following is/are a binary search tree?

BSTs allow efficient search!

Start at the root;

Trace down a path by comparing k with the key of the
current node x:

- If the keys are equal: we have found the key
- If k <key[x] search in the left subtree of x
- If k> key[x] search in the right subtree of x

Search for 41, then search fo@)

2
Anode inaBST

class BSTNode {

public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data; ‘[

3V
SR -
(

—_———————
BSTNode(const int & d) : data(d) {
left = right = parent = 0;
}
}s;

Define the BSTADT flyspoer O Typc

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

/

Traversing down the tree

+ Suppose n is a pointer to the root. What is the output

of the following code:
n = n->left; °

n = n->right;

cout<<n->data<<endl; ° °

A. 42

B. 32

:: OO ©

D. 41
E. Segfault

Traversing up the tree

* Suppose n is a pointer to the node with value 50.
+ What is the output of the following code:

n = n->parent; °

n = n->parent;

n = n->left; °
cout<<n->data<<endl; °

A. 42

OO @

C. 12

D. 45
E. Segfault

Insert

*Insert 40
@ -Search for the key
@ e -Insert at the spot you expected to find it

Max

Goal: find the maximum key value in a BST

Following right child pointers from the root, until a @
leaf node 1s encountered. The least node has the max

value
Alg: int BST: :max() e ﬂ G @
OONS®
O

Maximum = 20

Min

Goal: find the minimum key value in a BST

Start at the root. @

Follow child pointers from the root, until a

leaf node is encountered e @

Leaf node has the min key value

Alg: int BST: :min () e o e

In order traversal: print elements in sorted order

e Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)
@ e 2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Pre-order traversal: nice way to linearize your tree!

e Algorithm Preorder(tree)
1. Visit the root.
@ e 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Post-order traversal: use in recursive destructors!

e Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
@ 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
e 3. Visit the root.

Predecessor: Next smallest element
e - What is the predecessor of 327

* What is the predecessor of 457

Successor: Next largest element

e - What is the successor of 45?
- What is the successor of 507?

@ @ - What is the successor of 607?

Delete: Case 1

e Case 1: Node is a leaf node
+ Set parent’s (left/right) child pointer to null

a @ * Delete the node

® o6 ®

Delete: Case 2

e Case 2 Node has only one child
* Replace the node by its only child

Delete: Case 3
e Case 3 Node has two children

+ Can we still replace the node by one of its

a @ children? Why or Why not?

® o6 ®

Binary Search

- Binary search. Given value and sorted array a [], find index i such
that a[1i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[lo] =value =< a[hi].

- Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14

