BINARY SEARCH TREES

Problem Solving with Computers-|| C++

Concept Question class Node {

. e . public:
LinkedList::~LinkedList()A{ int info:
delete head; Node *next:
; i
Which of the following objects are deleted when the destructor of Linked-list is called?
head tail

T~ 20

(B): only the first node

(C):Aand B
(D): All the nodes of the linked list
(E): Aand D

Concept question

LinkedList::~LinkedList(){ Node: :~Node(){
delete head; delete next:

} ¥

Which of the following objects are deleted when the destructor of Linked-list is called?

head tall

(/-\)\\)Clg_>2 3/)

(B): All the nodes In the linked-list

(C):Aand B

(D): Program crashes with a segmentation fault
(E): None of the above

LinkedList::~LinkedList(){ Node: :~Node(){
delete head: delete next:

¥ ¥
head tall

T~ DD~

A tree has following general properties:

* One node 1s distinguished as a root;

* Every node (exclude a root) 1s connected
by a directed edge from exactly one other
node;

A direction 1s: parent -> children
» Leaf node: Node that has no children

Which of the following is/are a tree?

A @

B.

D.A&B

E. All of A-C

Binary Search Trees

- What are the operations supported?
- What are the running times of these operations?

- How do you implement the BST i.e. operations supported by it?

L
Operations supported by Sorted arrays and Binary Search Trees (BST)

Operations

Min

Max

Successor
Predecessor

Search

Insert

Delete

Print elements in order

e
Binary Search Tree — What is it?

« Each node:
@ « stores a key (k)
* has a pointer to left child, right child

@ e and parent (optional)

« Satisfies the Search Tree Property

Q 0 e For any node,

Keys in node’s left subtree <= Node’s key
Node’s key < Keys in node’s right subtree

Do the keys have to be integers?

Which of the following is/are a binary search tree?

¢

E. More than one of these

. A
BSTs allow efficient search!

Start at the root;

e + Trace down a path by comparing k with the key of the
current node x:

a e - If the keys are equal: we have found the key

- If k <key[x] search in the left subtree of x

0 0 @ « If k> key[x] search in the right subtree of x

@ Search for 41, then search for 53
diSeib

. S
Anode in a BST

class BSTNode {

public:
BSTNode* left;
BSTNode* right;
BSTNode* parent;
int const data;

BSTNode(const int & d) : data(d) {
left = right = parent = 0;
}
}s

Define the BST ADT

Operations

Search

Insert

Min

Max

Successor

Predecessor

Delete

Print elements in order

Traversing down the tree

Suppose n 1s a pointer to the root. What 1s the output
of the following code:

n = n->left;

n n->right;
cout<<n->data<<endl;
A. 42

B. 32

C. 12

D. 41

E. Segfault

Traversing up the tree

Suppose n 1s a pointer to the node with value 50.
What 1s the output of the following code:
n = n->parent;
n = n->parent;
n = n->left;
cout<<n->data<<endl;
A. 42
B. 32
C. 12
D. 45
E. Segfault

Insert

*Insert 40
@ -Search for the key
a e -Insert at the spot you expected to find it

Max

Goal: find the maximum key value in a BST

Following right child pointers from the root, until a @
leaf node is encountered. The least node has the max

value
Alg: int BST: :max () e e G @
OO ®
O

Maximum = 20

Min

Goal: find the minimum key value in a BST

Start at the root.

Follow child pointers from the root, until a
leaf node is encountered

Leaf node has the min key value

Alg: int BST: :min ()

In order traversal: print elements in sorted order

e Algorithm Inorder(tree)
1. Traverse the left subtree, i.e., call Inorder(left-subtree)
a e 2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Pre-order traversal: nice way to linearize your tree!

e Algorithm Preorder(tree)
1. Visit the root.
a e 2. Traverse the left subtree, i.e., call Preorder(left-subtree)
3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Post-order traversal: use in recursive destructors!

e Algorithm Postorder(tree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
a 2. Traverse the right subtree, i.e., call Postorder(right-subtree)
e 3. Visit the root.

Predecessor: Next smallest element
e - What is the predecessor of 327?

- What is the predecessor of 457?

@ ©
OJNO
=)

Successor: Next largest element

e - What is the successor of 45?
- What is the successor of 507

e @ - What is the successor of 607?

Delete: Case 1

e Case 1: Node is a leaf node
- Set parent’s (left/right) child pointer to null

e a - Delete the node

® o @

Delete: Case 2

e Case 2 Node has only one child
- Replace the node by its only child

Delete: Case 3

e Case 3 Node has two children

- Can we still replace the node by one of its

e @ children? Why or Why not?

ONANC

L
Binary Search

- Binary search. Given value and sorted array a[], find index i such
that a[i] = value, or report that no such index exists.

- Invariant. Algorithm maintains a[lo] =value = al[hi].

- Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo hi

