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Performance questions

- How efficient is a particular algorithm?
- CPU time usage (Running time complexity)
- Memory usage
- Disk usage
- Network usage

- Why does this matter?
- Computers are getting faster, so is this really important?
- Data sets are getting larger — does this impact running times?



How can we measure time efficiency of algorithms?
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Which implementation is significantly faster ?

A. B.
function F(n) { function F(n) { .
if(n == 1) return 1 CFeate an array fib[1l. .n]
. fib[l] =1
if(n == 2) return 1 £ib[2] = 1
return F(n-1) + F(n-2) for i = 3 to n:
} fib[i] = fib[i-1] + fib[i-2]

return fib[n]

C. Both are almost equally fast >
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A better question: How does the running time grow as a function of
input size

function F(n) {

function F(n) { Create an array £fib[l..n]

if(n == 1) return 1 fib[1l] = 1
if(n == 2) return 1 fib[2] =1
return F(n-1) + F(n-2) for i = 3 to n:
} fib[i] = fib[i-1] + fib[i-2]

return fib[n]

}

The “right” question is: How does the running time grow?
E.g. How long does it take to compute F(200)?
....let's say on....



NEC Earth Simulator

The Earth Simulator eenter

Can perform up to 40 trillion operations per second.
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The running time of the recursive implementation

The Earth simulator needs 292 seconds for F,,.

Time in seconds Interpretation function F(n) {
210 17 minutes if(n == 1) return 1
20 if(n == 2) return 1
2 12days return F(n-1) + F(n-2)
230 32 years }
240 cave paintings

Let’s try calculating F,q,

. using the iterative
270 The big bang! algorithm on my laptop.....



Goals for measuring time efficiency

- Focus on the impact of the algorithm:
Simplify the analysis of running time by ignoring “details” which may
be an artifact of the underlying implementation:

- E.g., 1000001 = 1000000

- Similarly, 3n2= n2

-Focus on trends as input size increases (asymptotic behavior):

How does the running time of an algorithm increases with the size of
the input in the limit (for large input Sizes)



Counting steps (instead of absolute time)

- Every computer can do some primitive operations in constant time:
- Data movement (assignment) p Y o i
- Control statements (branch, function call, return)
- Arithmetic and logical operations

- By inspecting the pseudo-code, we can count the number of primitive
operations executed by an algorithm .
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Running Time Complexity
Start by counting the primitive operations

/* N is the length of the array*/ o cmen-

H gswer
int sumArray(int arr[], int N) (it cesulk =0 4
{ ok 129 1
int result=0; 44N A
for(int i=0; i < N; i++) far - 7’3
result+=arr[i]; f@""g_;?ﬁ 2
return result; L""P rans @ N dmes
} 15blm>%sk?$

(€| + N"(, l’(‘l‘\’z)*"
Ve Ln

-
—



E,,MH46Z6U6AZSWWH
Big-O notation

- Simplification 1: Count steps instead of absolute
Steps =5*N +3 time

1 8 + Simplification 2: Ignore lower order terms

10 53 - Does the constant 3 matter as N gets large?
1000 5003 - Simplification 3: Ignore constant coefficients in
100000 500003 the leading term (5*N) simplified to N
10000000 50000003 After the simplifications,

The number of steps grows linearly in N
Running Time = O(N) pronounced “Big-Oh of N”



What takes so long? Let’s unravel the recursion..
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The same subproblems get solved over and over again! O



Orders of growth

- We are interested in how
algorithm running time scales
with input size

- Big-Oh notation allows us to
express that by ignoring the
details

+ 20n hours v. n2 microseconds:

* which has a higher order of
growth?

- Which one is better?
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Big-O notation lets us focus on the big picture

Recall our goals:
- Focus on the impact of the algorithm
- Focus on asymptotic behavior (running time as N gets large)

Count the number of steps in your algorithm: 3+ 5*N
Drop the constant additive term - 5*N

Drop the constant multiplicative term : N

Running time grows linearly with the input size
Express the count using O-notation

Time complexity = O(N)



Given the step counts for different algorithms, express the

running time complexity using Big-O
Nu?vxbu 3 9‘2’“ / I

1.10000000 oG)

2. 3*N AN

3. 6*N-2 OCN)

4. 15*N + 44 OW)

5. 50*N*1logN 0 (N LogN)
6. N2 O WY

7. N2-6N+9 O(N®)

5. 3N2+4*log (N)+1000 OW™S)

N
2" 4+ N4 NLogN O(Z)
For polynomials, use only leading term, ignore coefficients: linear, quadratic
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Common sense rules of Big-O

1. Multiplicative constants can be omitted: 14n2 becomes n2 .
2.n2 dominates nP if a > b: for instance, n? dominates n.

3. Any exponential dominates any polynomial: 3" dominates no (it even
dominates 2" ).
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What is the Big O of sumArray2

A O(N2) /* N is the length of the array*/

(N) i.nt sumArray2 (int arr[], int N)

C. O(N/2) int result=0/c"

D. O(log N) for(int i=0; i < N; i=i+2)

£. None of the array result+=arr[i]; )
return result;

Co
}
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e
What is the Big O of sumArray2

/* N is the length of the array*/

A O(N2) int sumArray2(int arr[], int N)
5. O(N) {
int result=0; <
'88\1/2?\1) for(int i= 1,1/%
o9 result+=arr[i];
E. None of the array return result; —
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Operations on sorted arrays

« Min :

- Max:

- Median:

- Successor:

- Predecessor:
- Search:

- Insert :

- Delete:

6 1314 |25(33 |43 515364 |72|84|93|95|96 |97
1 2 3 4 5 6 7 8 9 10 1 12 13 14

lo hi
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How is PAO1 going?

Done

On track to finish

Having trouble designing my classes
Stuck and struggling

Haven’t started

moowp»

- PA02 deadline this Thursday (04/18)at midnight



Next time

* Running time analysis of Binary Search Trees
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