
RUNNING TIME ANALYSIS - PART 2
BINARY SEARCH TREES RUNNING TIME

Problem Solving with Computers-II

What does Big-Oh really mean?

Formal definition of Big-O
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant
c > 0 and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g)
means that “f grows no faster than g”

Big-Omega
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Ω(g) if there are constants
c > 0, k>0 such that c · g(n) ≤ f(n)
for n >= k

f = Ω(g)
means that “f grows at least as fast as g”

Big-Theta
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Θ(g) if there are constants
c1, c2 , k such that 0 ≤ c1g(n) ≤ f(n) ≤
c2g(n), for n >=k

Running time

Problem Size (n)

What is the Big-O running time of algoX?
• Assume dataA is some data structure.
• Given: running time of operations for dataA, where M is the number of

keys stored in dataA
• insert: O(log M)
• min: O(1)
• delete: O(log M)

void algoX(int arr[], int N)
{
 dataA ds;//ds contains no keys
 for(int i=0; i < N; i++)
 ds.insert(arr[i]);
 for(int i=0; i < N; i++){
 arr[i] = ds.min();
 ds.delete(arr[i]);
 }
}

A. O(N2)
B. O(N logN)
C. O(N)
D. O(log N)
E. Not enough information to

compute

Best case, worst case, average case running times

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

Operations on sorted arrays
• Min :
• Max:
• Median:
• Successor:
• Predecessor:
• Search:
• Insert :
• Delete:

Worst case analysis of binary search
!8

bool binarySearch(int arr[], int element, int N){
//Precondition: input array arr is sorted in ascending order
 int begin = 0;
 int end = N-1;
 int mid;
 while (begin <= end){
 mid = (end + begin)/2;
 if(arr[mid]==element){
 return true;
 }else if (arr[mid]< element){
 begin = mid + 1;
 }else{
 end = mid - 1;

 }
 }
 return false;
}

