
RUNNING TIME ANALYSIS - PART 2
BINARY SEARCH TREES RUNNING TIME

Problem Solving with Computers-II

What does Big-Oh really mean?

Formal definition of Big-O
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = O(g) if there is a constant
c > 0 and k>0 such that
 f(n) ≤ c · g(n) for all n >= k.

f = O(g)
means that “f grows no faster than g”

Big-Omega
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Ω(g) if there are constants
c > 0, k>0 such that c · g(n) ≤ f(n)
for n >= k

f = Ω(g)
means that “f grows at least as fast as g”

Big-Theta
• f(n) and g(n): running times of two algorithms on inputs of size n.
• f(n) and g(n) map positive integer inputs to positive reals.

We say f = Θ(g) if there are constants
c1, c2 , k such that 0 ≤ c1g(n) ≤ f(n) ≤
c2g(n), for n >=k

Running time

Problem Size (n)

What is the Big-O running time of algoX?
• Assume dataA is some data structure.
• Given: running time of operations for dataA, where M is the number of

keys stored in dataA
• insert: O(log M)
• min: O(1)
• delete: O(log M)

void algoX(int arr[], int N)
{
 dataA ds;//ds contains no keys
 for(int i=0; i < N; i++)
 ds.insert(arr[i]);
 for(int i=0; i < N; i++){
 arr[i] = ds.min();
 ds.delete(arr[i]);
 }
}

A. O(N2)
B. O(N logN)
C. O(N)
D. O(log N)
E. Not enough information to

compute

Reasons

Each insert takes adifferent

Running time of
amount of time

because

less than the running time depends

this loop is on the number ofkeys

C N togN already in ds

The first insert takes
the

least time the last one

takes the most

Although we don't know

Running time ofthis the exact numberof
Coop is less than operations for

each

insert we can find
N tag logN an upper limit

Specifically the

Overall running running timeof
each

insert is less than
time is a log N

G Nlog Nt CzN t GNlog
N

OCNlogW

Best case, worst case, average case running times

821 3 4 65 7 109 11 12 14130

641413 25 33 5143 53 8472 93 95 97966

lo hi

Operations on sorted arrays
• Min :
• Max:
• Median:
• Successor:
• Predecessor:
• Search:
• Insert :
• Delete:

Worst case analysis of binary search
!8

bool binarySearch(int arr[], int element, int N){
//Precondition: input array arr is sorted in ascending order
 int begin = 0;
 int end = N-1;
 int mid;
 while (begin <= end){
 mid = (end + begin)/2;
 if(arr[mid]==element){
 return true;
 }else if (arr[mid]< element){
 begin = mid + 1;
 }else{
 end = mid - 1;

 }
 }
 return false;
}

