BINARY SEARCH TREES RUNNING TIME
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How is PAO1 going?

A. Done!
B. On track to finish

C. Made some progress but with difficulty
D. Haven't started



Binary Search Trees

< WHAT are the operations supported?
- HOW do we implement them?

- WHAT are the (worst case) running times of each operation?



Height of the tree = Height of Yhe soo¥

- ° Path — a sequence of nodes and edges connecting a node with a descendant.

@ » A path starts from a node and ends at another node or a leaf

<% . [Height ofinode}- The height of a node is the number of edges on the longest
downward path between that node and a leaf. gtz
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BSTs of different heights are possible with the same set of keys
Examples for keys: 12 32 41, 42, 45 Ll,22,u4S,M2% 12
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Worst case Big-O of search
Aolt)
(=) ;‘;‘:‘:‘ .+ Biven a BST of height H with N nodes,
Y what is the worst case compIeX|ty of
searching for a key?
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Worst case Big-O of insert

- Given a BST of height H and N
e o NOdes, what is the worst case

5< M’“ compIeX|ty of inserting a key?
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Worst case Big-O of min/max

- Given a BST of height H and N nodes,
what is the worst case complexity of
finding the minimum or maximum key?

A. O(1)

B. O(log H)
@O(H)

D. O(H*log H)
E. O(N)



! Worst:ase Big-O of predecessor/successor
red (W)= ul

P

) - Given a BST of height H and N nodes,
what is the worst case complexity of
finding the predecessor or successor key?

A. O(1)
B. O(log H)
(s, pred-9) V" ot

' D. O(H*log H)
E. O(N)




Worst case Big-O of delete

- Given a BST of height Hand N
nodes, what is the worst case
complexity of deleting the key
(assume no duplicates)?

- 0O(1)

. O(log H)

- O(H)

. O(H*log H)
O(N)
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Worst case analysis

\

Are binary search trees really faster than linked lists for finding elements?
- A. Yes
*B. No
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Completely filled binary tree 52 [H:° e )
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Nodes at each level have exactly two children,
except the nodes at the last level
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Relqting H (height) and N (#nodes) He Coeogm tta ;
frd is O(H),#we V\Y/‘irlt:o find a f(N) —@ 2+
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How many nodes are on level L in a completely filled binary search tree?
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Relating H (height) and N (#nodes)
find is O(H), we want to find a f(N) = H
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Finally, what is the height (exactly) of the tree in terms of N?
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Big O of traversals
In Order: OCN)

Pre Order:  OCPM)
Post Order: (M)




Balanced trees

- Balanced trees by definition have a height of O(log N)

- A completely filled tree is one example of a balanced tree

- Other Balanced BSTs include AVL trees, red black trees and so on
- Visualize operations on an AVL tree: https://visualgo.net/bn/bst



https://visualgo.net/bn/bst

Summary of operations

Operation Sorted Array |BST Balanced |Linked List
BST
Min

Max

Median
Successor
Predecessor
Search
Insert

Delete




