HEAPS

sedi

wde <30
sP

ysoct
osind nof®
inC mal“(\\
couc<<nﬁvlu S)
retor® =

Reminders BT~ Movie dokosst

- PA02 released, due Wed of Week 10 (06/02). %;;‘“; Ag;‘;i%{f frelzg

* L.ab05 due this/\Wed (05/19)

««zyBook, Chapter 7 activities due this Friday (05/21)

* Quiz 4 next week Mon (05/24): zybook chapters 5, 6, 7 (Run Time Analysis,
Stack, Queue, STL)

e
Heaps

« Clarification
* heap, the data structure is not related tosheap, the region of memory
» What are the operations supported?

* What are the running times? e Tine
e e i s R Ty
. Mok~ Heal (o5)
min- K C OCkoy
: :f ingeck > per ’
beat - m%C X | >top O o ()
N
e o (195 N

debese. ™MoX ——>(p €2
erphy (O

delcke 1WA

HeapS A“é Ralemced BT

Min-Heaps Max-Heap BST (Lo ™)
* Insert : OCLlg P 0Qg N OCN) “ Lﬁ: 'Y
* Min: o - oed O(_ 9&92"‘)
) 0O
. in- N\ - 0 CND
. I\D/Izlfte Min: O(L‘ﬁ) S P o w&/:))
- OlN oC
- Delete Max -— OLogM)) @ Goct bo s '
wsh (5)
< 2° P\As\r\ (20)
Applications: > puh ()
- Efficient sort op Y2
* Finding the median of a sequence of numbers min-Werp laop(D

- Compression codes

Choose-heap if you are doing repeated insert/delete/(min OR max) operations

Heaps as binary trees

* Rooted binary tree that is as complete as possible
* In a min-Heap, each node satisfies the following heap property:
key(x)<= key(children of x)

Min Heap with 9 nodes
lgo? (@)

® G@V
® @

Where is the minimum element?

Heaps as binary trees

* Rooted binary tree that is as complete as possible
* In a max-Heap, each node satisfies the following heap property:
key(x)>= key(children of x)

o)
op U

Where is the maximum element?

Structure: Complete binary tree

A heap is a complete binary tree: Each level is as full as possible.
Nodes on the bottom level are placed as far left as possible
ngert
@\ P> 0C0og)

e
|dentifying heaps

Starting with the following min-Heap which of the following operations
will result in something that is NOT a min Heap

A. Swap the nodes 40 and 32 v srit o min-HeP
B. Swap the nodes 32 and 43 4 o

C. Swap the nodes 43 and 40 - =~""7
D. Insert 50 as the left child of 45

(EJx&D

B
Insert 50 into a heap I0gerF (38D insert ()
¢

* Insert key(x) in the first open slot at the last level of tree (going from left to right)

« If the heap property is not violated - Done

* Else: while(key(parent(x))>key(x)) swap the key(x) with key(parent(x)) f_@ublﬁj
min- Wenpr “f

oCHD

O (g™)

Insert 50, then 35, then 8

Delete min

* Replace the root with the rightmost node at the last level

* “Bubble down”- swap node with one of the children until the heap
property is restored

Under the hood of heaps

 An efficient way of implementing heaps is using vectors

+ Although we think of heaps as trees, the entire tree can be efficiently
represented as a vector!!

O
/\O > Vecwy
@,
~
O/\C)g O

Implementing heaps using an array or vector

+ o
Vaue & 10 12 4o 22 2 Y>> T Ul so
Index 0 1 2 3 4 5 6 7 8 3
. £ O(\)
o) Theer _tAn e
Hgporner >

—

o

@ w) Using vector as the internal data structure
of the heap has some advantages:

* More space efficient than trees
» Easier to insert nodes into the heap

Finding the “parent” of a “node” in the vector representation

For a key at index i, index of the parent is

G (i-1)/2

Insert into a heap

* Insert key(x) in the first open slot at the last level of tree (going from left to right)
* If the heap property is not violated - Done
* Else....

-

Insert the elements {12, 41, 47, 45, 32} in a min-Heap using the vector
representation of the heap

\l\{WBL i M%
I W 4w = @\
o 1 2 3 4 ke >
fr=\"\ T = L @\\\
2

Inser:L5@—then35 Dedcre &

For a node at index i, index of the parent is

@ @ int(i-1/2) (L_,) o
Cldfen (1) [:33 Leg 1D
e @ @[o &‘gl\}dk‘a

e
Insert 8 into a heap

Value 6 10 12 40 32 43 47 45 41 50 35
Index O 1 2 3 4 5 6 7 8 9 10

After inserting 8, which node is the parent of 8 ?
A. Node 6

B. Node 12

C. None 43

D. None - Node 8 will be the root

Delete min

* Replace the root with the rightmost node at the last level

* “Bubble down”- swap node with one of the children until the heap
property is restored

Traversing down the tree

Value 6 10 12 40 32 43 47 45 41
Index O 1 2 3 4 5 6 7 8

° For a node at index i, what is the index of
G the left and right children?
G A. (2%, 2*i+1)

@(2*i+1, 2%i+2)
@ @ @ G C. (log(i), log(i)+1)
@ 0 D. None of the above

e
Next lecture

* Under the hood of heaps
* More on STL implementation of heaps (priority queues)

